
ON MOD p ORIENTATION CHARACTERS
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Abstract. Suppose F is a finite extension of Qp and G the group of F -points of a connected reductive

F -group. We prove that the mod p orientation character of G is trivial, giving a different proof of a result of

Schneider–Sorensen.

1. Introduction

Let F denote a finite extension of Qp and G a connected reductive group over F , with G := G(F ) its group

of F -rational points. We will often conflate algebraic groups over F with their groups of F -points. We fix a
chamber C in the semisimple Bruhat–Tits building of G, let I denote the associated Iwahori subgroup and I1
its pro-unipotent radical, an open pro-p subgroup of G. We assume throughout that I1 is torsion-free1. This
assumption guarantees that the cohomological dimension of I1 is finite, equal to d := dimQp(G) (see [Ser65,
Cor. (1)]).

Given a point x in the semisimple Bruhat–Tits building and a real number r ≥ 0, we denote by Gx,r the
depth-r Moy–Prasad subgroup. Our goal will be to prove the following:

Theorem 1.1. Assume I1 is torsion-free. Let r′ > 0, and suppose g ∈ G satisfies g ·x = x. Then the adjoint
action of g on Hd(Gx,r′ ,Fp) is trivial.

2. Preparation

In order to prove the theorem, we make a few reductions and preparations. Firstly, replacing G by the
Weil restriction ResF/Qp

(G), we may assume F = Qp.
Next, we recall some properties of Moy–Prasad filtrations [MP96]. For each point x in the semisimple

Bruhat–Tits building and each real number r ≥ 0, we let Gx,r denote the depth-r Moy–Prasad subgroup.
Further, we let g denote the Lie algebra of G, and let gx,r denote the depth-r Moy–Prasad Lie sublattice.
It is a free Zp-module whose Qp-span is g(Qp). These filtrations satisfy the following properties (see [MP96,
§§ 3.2, 3.3]):

• If r ≤ s, then Gx,s is a normal subgroup of Gx,r.
• The set {Gx,r}r≥0 gives a neighborhood basis of the identity.
• If x is contained in the closure of the facet containing y, thenGx,0+ ≤ Gy,0+, whereGz,0+ :=

⋃
s>0Gz,s

(cf. [DeB02, Def. 3.2.18, Cor. 3.2.19]).
• For g ∈ G, we have Ad(g)(Gx,r) = Gg·x,r and Ad(g)(gx,r) = gg·x,r. In particular, if g · x = x, then

Ad(g) preserves Gx,r and gx,r.
• We have pgx,r = gx,r+1.

Let r > 0 and y ∈ C, and note that I1 = Gy,0+. Since every point x is G-conjugate to a point in C, we have

Ad(g)(Gx,r) = Gg·x,r ≤ Gg·x,0+ ≤ Gy,0+

for some g ∈ G satisfying g · x ∈ C, by the third and fourth points above. Consequently, we see that the
torsion-freeness assumption on I1 implies that every Gx,r is torsion-free (for r > 0). Thus, by [Ser65, Cor. (1)]

and [Laz65, Thm. V.2.5.8], Gx,r is a Poincaré group of dimension d. In particular, we have Hd(Gx,r,Fp) ∼= Fp

(see op. cit., §V.2.5.7), and Theorem 1.1 is trivially true for p = 2. Therefore, we may assume that p is odd.

We thank Loren Spice for several useful comments.
1This condition is satisfied if p is sufficiently large relative to the rank of G and the absolute ramification index of F ; for an

explicit bound (at least when G is semisimple), see [Tot99, Prop. 12.1].
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Lemma 2.1. Suppose r ≥ 1. Then there exists an isomorphism

Gx,r/Gx,r+1
∼−→ gx,r/gx,r+1 = gx,r ⊗Zp

Fp.

Moreover, if g ∈ G satisfies g · x = x, then this isomorphism is equivariant for the adjoint action of g.

Proof. The claimed isomorphism is known as the Moy–Prasad isomorphism and is well-known when G splits
over a tamely ramified extension [Yu01, Cor. 2.4]. When G is wild, the Moy–Prasad filtration has many
deficiencies [Yu02, §§ 0.4, 4.6]. Nonetheless, something can still be said in general. The theory of dilatation,
a close relative of the Moy–Prasad filtration, constructs a congruence filtration (Hn)n≥0 on any flat affine
group scheme H of finite type over Zp. The dilatation Hn is again a flat, affine, finite-type Zp-group scheme
and Hn(Zp) = ker(H(Zp) −→ H(Z/pnZ)). In this setting one can prove that when H is in addition smooth
and with connected generic fiber, there is a functorial isomorphism of Z/pnZ-group schemes

Hn,Z/pnZ
∼−→ hn,Z/pnZ,

where hn is the Lie algebra of Hn and the subscript Z/pnZ denotes base change. In a forthcoming book on
the Bruhat–Tits building, Kaletha and Prasad explain this general result on dilatation [KP, Prop. A.5.17]
and use it to prove an even stronger version of the claimed isomorphism ([KP, Thm. 12.4.1]).2 �

Corollary 2.2. Suppose p is odd. For r ≥ 1, we have

H1(Gx,r,Fp) ∼= HomFp
(gx,r/gx,r+1,Fp) = (gx,r/gx,r+1)∗.

Proof. Since Gx,r acts trivially on Fp, we have

H1(Gx,r,Fp) = Homcts(Gx,r,Fp) = Hom
(
(Gx,r)Φ,Fp

)
,

where (Gx,r)Φ := Gx,r/G
p
x,r[Gx,r, Gx,r] denotes the Frattini quotient. The group gx,r/gx,r+1 is abelian and

p-torsion, and the above lemma implies that the same is true for Gx,r/Gx,r+1. The universal property of the
Frattini quotient then gives a surjective map

(Gx,r)Φ −� Gx,r/Gx,r+1
∼−→ gx,r/gx,r+1.

By dualizing, we obtain

(1) HomFp
(gx,r/gx,r+1,Fp) ↪−→ Hom

(
(Gx,r)Φ,Fp

)
= H1(Gx,r,Fp),

which implies dimFp(H1(Gx,r,Fp)) ≥ dimFp(gx,r/gx,r+1) = dimQp(G) = d. On the other hand, [Klo11, Prop.

1.2] implies that dimFp
(H1(Gx,r,Fp)) ≤ d. Thus, the injection (1) is an isomorphism. �

Corollary 2.3.

(a) If p ≥ 5, then Gx,r is a uniform pro-p group for all r ≥ 1.
(b) If p = 3, then Gx,r is a uniform pro-3 group for all r � 0 sufficiently large.

Proof. For p ≥ 5, this follows from the previous corollary and [KS14, Prop. 1.10, Rmk. 1.11]. Assume
p = 3. By [DdSMS99, Cor. 4.3], the group I1 possesses an open normal subgroup H which is uniform, and in
particular saturable. Since the Moy–Prasad subgroups give a neighborhood basis of the identity, there exists
r0 > 0 such that Gx,r0 ≤ H. Then, for any r ≥ max{r0, 1} we have Gx,r ≤ H, and the result follows from
the previous corollary and [KS14, Cor. 1.7]. �

3. Proof

We now prove Theorem 1.1, given the reductions in the previous section. Thus, we assume that p is odd,
G is defined over Qp, I1 is torsion-free, and g ∈ G satisfies g · x = x.

By Corollary 2.3, there exists a real number r ≥ max{r′, 1} for which the group Gx,r is uniform. By [Ser02,
pf. of Prop. 30], the corestriction map

cor : Hd(Gx,r,Fp) −→ Hd(Gx,r′ ,Fp)

is an isomorphism, which is furthermore equivariant for the adjoint action of g. Therefore, it suffices to
compute the action of Ad(g) on Hd(Gx,r,Fp).

2We cite [KP] with the caveat that it is still a draft and is undergoing proof-reading and revisions.
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Since Gx,r is uniform, [SW00, Thm. 5.1.5] and Corollary 2.2 imply that we have Ad(g)-equivariant iso-
morphisms of Fp-vector spaces

Hd(Gx,r,Fp) ∼=
∧d

Fp

H1(Gx,r,Fp) ∼=
∧d

Fp

(gx,r/gx,r+1)∗.

Therefore, by dualizing, it suffices to prove that Ad(g) acts trivially on∧d

Fp

gx,r/gx,r+1
∼=
∧d

Fp

(
gx,r ⊗Zp Fp

) ∼= (∧d

Zp

gx,r

)
⊗Zp Fp.

Using the above isomorphisms, it suffices to show that
∧d

Ad(g) acts trivially on
∧d

Zp
gx,r. The latter is

a free Zp-module of rank 1 since gx,r is a free Zp-module of rank d, and we are reduced to showing that
detZp(Ad(g)) = 1 for the adjoint action of g on gx,r (note that the determinant is defined as gx,r is free of
finite rank).

In order to prove that the determinant of the map Ad(g) : gx,r −→ gx,r is equal to 1, it suffices to do so

after tensoring by Qp:

Ad(g) : g = gx,r ⊗Zp
Qp −→ g = gx,r ⊗Zp

Qp.

Recall that the group G has an almost-direct product decomposition G = ZGder, where Z denotes the
connected center of G and Gder denotes the derived subgroup (see [Spr09, Cor. 8.1.6(i)]). Let us write
g = zg′ with z ∈ Z and g′ ∈ Gder. As linear maps on g, we have

Ad(g) = Ad(z) ◦Ad(g′) = Ad(g′),

since z is central. Therefore, we get

detQp
(Ad(g)) = detQp

(Ad(g′)) = 1,

since Gder is generated by commutators. This concludes the proof of Theorem 1.1.

4. Orientation character

We once again make no assumption on p, and continue to assume I1 is torsion-free. We define the mod p
orientation character ξ : G −→ F×p as follows. Let Fp denote the trivial G-representation. For g ∈ G, we set

Ig := I1 ∩ gI1g−1, and let ξ(g) denote the scalar defined by the sequence of isomorphisms

Fp

tr−1
I
g−1

−−−−→ Hd(Ig−1 ,Fp)
g∗−→ Hd(Ig,Fp)

trIg−−→ Fp.

Here trK : Hd(K,Fp)
∼−→ Fp is the trace map, defined in [Ser02, §I.4.5, Prop. 30(b)] for any torsion-free open

pro-p subgroup of G. It is known that the association g 7−→ ξ(g) gives a homomorphism, which is trivial on
I1 ([SS] and [Koz, Lem. 4.11, Def. 4.12]).

The following result was first proved by Schneider–Sorensen.

Theorem 4.1. The character ξ : G −→ F×p is trivial.

Proof. We fix an apartment of the semisimple Bruhat–Tits building which contains C, and let S denote the
associated maximal F -split torus. Recall that the group G has a Bruhat factorization

G = I1NI1,

where N denotes the group of F -points of the normalizer of S (see [Vig16, Prop. 3.35]). Since ξ is trivial on
I1, it suffices to prove that it is also trivial on N .

The group N acts by simplicial automorphisms on the apartment associated to S, and we define NC to
be the subgroup of N which stabilizes C. By equations (53) of [Vig16], the group N is generated by NC and
representatives of affine reflections in the walls of C. It therefore suffices to prove that ξ is trivial on NC and
on each such affine reflection.

Suppose first that g ∈ NC , so that g normalizes I1 and Ig = Ig−1 = I1. Let x denote the barycenter of C,
so that g · x = x and I1 = Gx,r for some sufficiently small r > 0. By Theorem 1.1, we have that

g∗ = Ad(g) : Hd(I1,Fp) −→ Hd(I1,Fp)

is the identity map. By definition of ξ, we get ξ(g) = 1.
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Suppose now that g is a representative of an affine reflection in a wall of C. Let x ∈ C denote a point on
this wall, so that g · x = x. Since Ig ∩ Ig−1 is open in G, we may choose r > 0 such that Gx,r ≤ Ig ∩ Ig−1 .
By canonicity of the trace map (cf. [Koz, Lem. 4.9]) and functoriality of the corestriction map, the following
diagram is commutative:

Fp Hd(Ig−1 ,Fp) Hd(Ig,Fp) Fp

Hd(Gx,r,Fp) Hd(Gx,r,Fp)

tr−1
I
g−1

tr−1
Gx,r

g∗ trIg

cor
I
g−1

Gx,r

Ad(g)

cor
Ig
Gx,r trGx,r

(Recall that by [Ser02, pf. of Prop. 30], the displayed corestriction maps are isomorphisms.) By Theorem
1.1, the bottom horizontal arrow is the identity map, which implies ξ(g) = 1. �
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