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The Langlands-Rapoport conjecture I

Langlands and Rapoport conjectured the existence of integral
models of Shimura varieties with good properties.

For example the the modular curve Y0(N) has a smooth
integral model over Z(p) with p - N, using the moduli
interpretation in terms of families of elliptic curves.

The modular curve Y0(Np) also has an integral model over
Z(p) with p - N, but it is no longer smooth.

Understanding these integral models has interesting
applications, e.g. construction of Galois representations
(Deligne, Langlands), Ribet’s proof of the ε-conjecture.
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The Langlands-Rapoport conjecture II

Let (G ,X ) be a Shimura datum, i.e., G is a reductive group
over Q and X is a Hermitian symmetric domain with an action
of G (R)

Let p be a prime number, Kp ⊂ G (Ap
f ) be a compact open

subgroup and Kp ⊂ G (Qp) a parahoric subgroup and let
K = KpKp ⊂ G (Af ).

Let ShK (G ,X ) be the associated Shimura variety, which is an
algebraic variety over a number field E , the reflex field.

If v | p is a place of E , then the conjecture predicts that there
should be a ‘good’ integral model SK (G ,X ) over OE(v)

.

For example G = GL2,X = H± and Kp = GL2(Zp) or
Kp = Γ0(p), then E = Q and the integral models from the
previous slide are ‘good’.
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The Langlands-Rapoport conjecture III

The conjecture then predicts that there is a partition into
‘isogeny classes’

SK (G ,X )(Fp) '
∐
φ

Sφ, (1)

compatible with the action of prime to p Hecke operators.

Moreover, the Sφ ⊂ SK (G ,X )(Fp) have the following
description (‘Rapoport-Zink uniformisation’)

Sφ ' Iφ(Q)\Xp(φ)× X p(φ)/Kp (2)

Here Xp(φ) is an affine Deligne-Lusztig variety of level Kp.
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Previous Work

Kottwitz (1992) proved closely related results for PEL type Shimura
varieties of type A and C, at primes p > 2 with Kp hyperspecial.

Theorem (Kisin, 2008 and 2013)
Let (G ,X ) be a Shimura datum of abelian type, let p > 2 and
suppose that GQp is unramified and that Kp is hyperspecial. Then
the Langlands-Rapoport conjecture holds for (G ,X , p).

Theorem (Zhou, 2017)
Let (G ,X ) be a Shimura datum of Hodge type, let p > 2 and
suppose that GQp is residually split, then isogeny classes have
Rapoport-Zink uniformisation for arbitrary parahorics Kp.
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Main Results I

Let (G ,X ) be a Shimura datum of abelian type, let p > 2 and
suppose that GQp is unramified.

Let Kp ⊂ G (Ap
f ) be compact open

and let Kp ⊂ G (Qp) be a parahoric subgroup.

Theorem 1 (-)
Suppose that G has no factors of type A and that ShK (G ,X ) is
proper. Then the Langlands-Rapoport conjecture holds for the
Kisin-Pappas integral models of ShK (G ,X ).

Remarks
The assumption that GQp is unramified can be removed for most
(G ,X ).
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Idea of the proof I

Since we know the results at hyperspecial level, it suffices to
understand the fibers of the forgetful map. When G = GL2, then
the forgetful map has the following description:

Y0(Np) {(E , αN ,H ⊂ E [p]}

Y0(N) {(E , αN}

(3)

Here E is an elliptic curve, αN is a Γ0(N) level structure and
H ⊂ E [p] is a subgroup of order p. An elliptic curve over Fp has
either one or two choices for H, depending on whether it is
supersingular or ordinary. We observe that the fiber only depends
on the p-divisible group E [p∞]
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Idea of the proof II

For moduli spaces of abelian varieties with extra structures, these
fibers are more complicated and usually not finite, for example the
fibers can be projective lines. However, it is still true that the fibers
only depend on the p-divisible group with extra structures. This
means that we can use Dieudonné theory to understand the fibers.

For Hodge type Shimura varieties, the integral models do not have
a moduli interpretation, which makes it difficult to make the above
strategy work. We can still associate a p-divisible group with extra
structures X to an Fp-point, but it is no longer clear that the fiber
only depends on this X .
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Idea of the proof III

Let Kp be a hyperspecial parahoric and K ′p ⊂ Kp another parahoric.
Let SK ,Fp

(G ,X ) be the special fiber of the Kisin-Pappas integral
model, then it has a morphism to the ‘moduli space of p-divisible
groups with extra structures’. This map fits into a commutative
diagram together with its variant for K ′

SK ′,Fp
(G ,X ) ShtG ,µ,K ′

p

SK ,Fp
(G ,X ) ShtG ,µ,Kp .

(4)

Here ShtG ,µ,Kp is the pre-stack of G -shtukas of type µ and
parahoric Kp. These were introduced by Xiao-Zhu and generalised
by Shen-Yu-Zhang.

The LR conjecture holds for the Shimura variety in the top left
corner if and only if the diagram is Cartesian.
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Idea of the proof IV

So let Y be the fiber product of the diagram and consider the
morphism i : SK ′,Fp

(G ,X )→ Y , we will show it is an isomorphism
in three steps:

We show that i is a closed immersion.

We show that Y is equidimensional.

We prove that Y has the same number of irreducible
components as SK ′,Fp

(G ,X ). We do this by showing that Y
has as few irreducible components as possible.

This last result is new even for SK ′,Fp
(G ,X )!
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Main Results II

The modular curve Γ0(N) comes equipped with the Ekedahl-Oort
stratification; the stratum that an Fp point (E , αn) is in is
determined by the p-torsion E [p].

More generally, this defines a
stratification on the moduli space of abelian varieties.

Ekedahl and van der Geer showed that Ekedahl-Oort strata are
irreducible precisely when they are not contained in the
supersingular locus.

Let (G ,X ) be as above, and let Kp be a hyperspecial subgroup.

Theorem 2 (-)
Suppose that G has no factors of type A, that ShK (G ,X ) is proper
and that G ad is Q-simple. Then Ekedahl-Oort strata that are not
contained in the basic locus are ‘irreducible’.
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