An approach to characterizing the local Langlands conjecture over *p*-adic fields

Alex Youcis (IMPAN) (joint with A. Bertoloni Meli (Michigan))

2020 CARTOON conference

周 ト イ ヨ ト イ ヨ

Some notation

Throughout this talk we will use the following notation:

• *F* a *p*-adic local field (with ring of integers *O* and residue field *k*).

・ 同 ト ・ ヨ ト ・ ヨ ト

Some notation

Throughout this talk we will use the following notation:

- *F* a *p*-adic local field (with ring of integers *O* and residue field *k*).
- G a reductive group over F (e.g. $G = \text{Sp}_{2n}$).

Some notation

Throughout this talk we will use the following notation:

- *F* a *p*-adic local field (with ring of integers *O* and residue field *k*).
- G a reductive group over F (e.g. $G = \operatorname{Sp}_{2n}$).
- \widehat{G} will denote the dual group to G (e.g. $\widehat{\operatorname{Sp}_{2n}} = \operatorname{SO}_{2n+1}$).

・ 同 ト ・ ヨ ト ・ ヨ ト

Some notation

Throughout this talk we will use the following notation:

- *F* a *p*-adic local field (with ring of integers \mathcal{O} and residue field *k*).
- G a reductive group over F (e.g. $G = \operatorname{Sp}_{2n}$).
- \widehat{G} will denote the dual group to G (e.g. $\widehat{\operatorname{Sp}_{2n}} = \operatorname{SO}_{2n+1}$).
- ${}^{L}G$ will denote the Weil form of the *L*-group (i.e. ${}^{L}G = \widehat{G} \rtimes W_{F}$).

The local Langlands correspondence Work of Scholze and Scholze–Shin

The local Langlands conjecture

A Langlands correspondence

A Langlands correspondence for G is a finite-to-one association

$$\mathsf{LL}: \left\{ \begin{array}{c} \mathsf{Admissible representations} \\ \mathsf{of } G(F) \end{array} \right\} \to \left\{ \begin{array}{c} L\text{-parameters} \\ \mathsf{of } G \end{array} \right\}$$

satisfying some list of desiderata.

The local Langlands correspondence Work of Scholze and Scholze–Shin

| 4 同 🕨 🖌 🖉 🕨 🗸 🖻

The local Langlands conjecture

A Langlands correspondence

A Langlands correspondence for G is a finite-to-one association

$$\mathsf{LL}: \left\{ \begin{array}{c} \mathsf{Admissible representations} \\ \mathsf{of } G(F) \end{array} \right\} \to \left\{ \begin{array}{c} L\text{-parameters} \\ \mathsf{of } G \end{array} \right\}$$

satisfying some list of desiderata.

L-packets

An *L*-packet for LL is a set (necessarily finite) of the form $\Pi_G(\psi) := LL^{-1}(\psi)$ for some *L*-parameter ψ of *G*.

The local Langlands correspondence Work of Scholze and Scholze–Shin

▲ 同 ▶ ▲ 国 ▶ ▲ 国

The local Langlands conjecture (cont.)

Some known cases

• $G = GL_n$ (Harris–Taylor, Henniart, Scholze).

The local Langlands correspondence Work of Scholze and Scholze–Shin

▲ 同 ▶ ▲ 国 ▶ ▲ 国

The local Langlands conjecture (cont.)

Some known cases

• $G = GL_n$ (Harris–Taylor, Henniart, Scholze).

•
$$G = \operatorname{Sp}_{2n}$$
 and $G = \operatorname{SO}_{2n+1}$ (Arthur).

The local Langlands correspondence Work of Scholze and Scholze–Shin

▲ 同 ▶ ▲ 国 ▶ ▲ 国

The local Langlands conjecture (cont.)

Some known cases

- $G = GL_n$ (Harris–Taylor, Henniart, Scholze).
- $G = \operatorname{Sp}_{2n}$ and $G = \operatorname{SO}_{2n+1}$ (Arthur).
- G is a quasi-split unitary group (Mok).

The local Langlands correspondence Work of Scholze and Scholze–Shin

・ 同 ト ・ ヨ ト ・ ヨ

The local Langlands conjecture (cont.)

Some known cases

- $G = GL_n$ (Harris–Taylor, Henniart, Scholze).
- $G = \operatorname{Sp}_{2n}$ and $G = \operatorname{SO}_{2n+1}$ (Arthur).
- G is a quasi-split unitary group (Mok).
- *G* is an arbitrary unitary group (Kaletha–Minguez–Shin–White).

The local Langlands correspondence Work of Scholze and Scholze–Shin

・ 同 ト ・ ヨ ト ・ ヨ ト

The local Langlands conjecture (cont.)

Some known cases

- $G = GL_n$ (Harris–Taylor, Henniart, Scholze).
- $G = \operatorname{Sp}_{2n}$ and $G = \operatorname{SO}_{2n+1}$ (Arthur).
- G is a quasi-split unitary group (Mok).
- G is an arbitrary unitary group (Kaletha–Minguez–Shin–White).
- $G = GSp_4$ (Gan–Takeda)

The local Langlands correspondence Work of Scholze and Scholze–Shin

→ < Ξ → <</p>

The local Langlands conjecture (cont.)

Question

What are the desiderata that LL should satisfy

The local Langlands correspondence Work of Scholze and Scholze–Shin

・ 同 ト ・ ヨ ト ・ ヨ

The local Langlands conjecture (cont.)

Question

What are the desiderata that LL should satisfy and, do they uniquely characterize the correspondence LL?

The local Langlands correspondence Work of Scholze and Scholze–Shin

The local Langlands conjecture (cont.)

Question

What are the desiderata that LL should satisfy and, do they uniquely characterize the correspondence LL?

The GL_n case

In the case of $G = GL_n$ one can take the standard desiderata that LL is compatible with tensor products, local class field theory, *L*-functions, and ϵ -factors. These properties do uniquely characterize the correspondence.

The local Langlands correspondence Work of Scholze and Scholze–Shin

Scholze's characterization of LLC for GL_n

Theorem (Scholze, 2013)

For every $\tau \in W_F^+$ and $h \in C_c^{\infty}(\mathrm{GL}_n(\mathcal{O}), \mathbb{Q})$ there exists a function $f_{\tau,h} \in C_c^{\infty}(\mathrm{GL}_n(F), \mathbb{Q})$ such that for any admissible representation π of $\mathrm{GL}_n(F)$ the equality

$$\operatorname{tr}(f_{\tau,h} \mid \pi) = \operatorname{tr}(\tau \mid \operatorname{LL}(\pi)(\chi)) \operatorname{tr}(h \mid \pi)$$

holds, and this uniquely characterizes LL.

The local Langlands correspondence Work of Scholze and Scholze–Shin

▲ 同 ▶ ▲ 国 ▶ ▲ 国

The function $f_{\tau,h}$

The functions $f_{\tau,h}$

The functions $f_{\tau,h}$, which really should be denoted $f^{\mu}_{\tau,h}$, are of a geometric provenance.

The local Langlands correspondence Work of Scholze and Scholze–Shin

The function $f_{\tau,h}$

The functions $f_{\tau,h}$

The functions $f_{\tau,h}$, which really should be denoted $f^{\mu}_{\tau,h}$, are of a geometric provenance.

• They can be described in terms of the cohomology of tubular neighborhoods inside of Rapoport-Zink spaces.

・ 同 ト ・ ヨ ト ・ ヨ

The function $f_{\tau,h}$

The functions $f_{\tau,h}$

The functions $f_{\tau,h}$, which really should be denoted $f^{\mu}_{\tau,h}$, are of a geometric provenance.

- They can be described in terms of the cohomology of tubular neighborhoods inside of Rapoport-Zink spaces.
- They show up as terms in the trace formula existing within the framework of the Langlands-Kottwitz(-Scholze) method.

< ロ > < 同 > < 三 > < 三 >

The function $f_{\tau,h}$

The functions $f_{\tau,h}$

The functions $f_{\tau,h}$, which really should be denoted $f^{\mu}_{\tau,h}$, are of a geometric provenance.

- They can be described in terms of the cohomology of tubular neighborhoods inside of Rapoport-Zink spaces.
- They show up as terms in the trace formula existing within the framework of the Langlands-Kottwitz(-Scholze) method.
- They have generalized versions beyond GL_n for more general PEL type situations (Scholze) and in most abelian type situations (forthcoming work of the author).

The local Langlands correspondence Work of Scholze and Scholze–Shin

The Scholze–Shin conjecture

Conjecture (Scholze-Shin)

Let G be an unramified group over \mathbb{Q}_p with \mathbb{Z}_p -model G and let μ be a dominant cocharacter of $G_{\overline{\mathbb{Q}_p}}$ with reflex field E. Let $\tau \in W^+_{\mathbb{Q}_p}$ and let $h \in C^{\infty}_c(\mathcal{G}(\mathbb{Z}_p), \mathbb{Q})$. Then, for every supercuspidal *L*-parameter ψ

$$S\Theta_{\psi}(f_{\tau,h}) = \operatorname{tr}\left(\tau \mid (r_{-\mu} \circ \psi) \mid_{W_{E}} \mid \cdot \mid_{E}^{-\langle \rho, \mu \rangle}\right) S\Theta_{\psi}(h).$$

The local Langlands correspondence Work of Scholze and Scholze–Shin

The Scholze–Shin conjecture

Conjecture (Scholze-Shin)

Let G be an unramified group over \mathbb{Q}_p with \mathbb{Z}_p -model G and let μ be a dominant cocharacter of $G_{\overline{\mathbb{Q}_p}}$ with reflex field E. Let $\tau \in W^+_{\mathbb{Q}_p}$ and let $h \in C^{\infty}_c(\mathcal{G}(\mathbb{Z}_p), \mathbb{Q})$. Then, for every supercuspidal *L*-parameter ψ

$$S\Theta_{\psi}(f_{\tau,h}) = \operatorname{tr}\left(\tau \mid (r_{-\mu} \circ \psi) \mid_{W_{E}} \mid \cdot \mid_{E}^{-\langle \rho, \mu \rangle}\right) S\Theta_{\psi}(h).$$

Notation

 r_{-µ} is the representation of ^LG whose restriction to G has highest weight µ[∨].

The local Langlands correspondence Work of Scholze and Scholze–Shin

伺下 イラト イラ

The Scholze–Shin conjecture (cont.)

First natural question

Does the Scholze–Shin conjecture hold for LL for groups other than GL_n ?

The local Langlands correspondence Work of Scholze and Scholze–Shin

A (1) > (1) > (1)

The Scholze–Shin conjecture (cont.)

First natural question

Does the Scholze–Shin conjecture hold for LL for groups other than GL_n ?

Second natural question

Does the Scholze–Shin equations uniquely characterize LL for groups other than GL_n ?

The local Langlands correspondence Work of Scholze and Scholze–Shin

▲ 同 ▶ ▲ 国 ▶ ▲ 国

The Scholze–Shin conjecture (cont.)

Towards the first question

This is known to hold in some cases:

The local Langlands correspondence Work of Scholze and Scholze–Shin

▲ 同 ▶ ▲ 国 ▶ ▲ 国

The Scholze–Shin conjecture (cont.)

Towards the first question

This is known to hold in some cases:

• Some PEL cases (Scholze and Scholze-Shin).

The local Langlands correspondence Work of Scholze and Scholze–Shin

・ 同 ト ・ ヨ ト ・ ヨ

The Scholze–Shin conjecture (cont.)

Towards the first question

This is known to hold in some cases:

- Some PEL cases (Scholze and Scholze-Shin).
- It's known to hold (appropriately interpreted) in some cases of the form G = D[×] (Shen).

The local Langlands correspondence Work of Scholze and Scholze–Shin

マロト イヨト イヨ

The Scholze–Shin conjecture (cont.)

Towards the first question

This is known to hold in some cases:

- Some PEL cases (Scholze and Scholze-Shin).
- It's known to hold (appropriately interpreted) in some cases of the form $G = D^{\times}$ (Shen).
- It's known to hold in the case of unitary groups (Bertoloni Meli-Y.)

Setup for main result

Supercuspidal L-parameters

An *L*-parameter ψ is called *supercuspidal* if $\operatorname{im}(\psi)$ does not lie in a proper parabolic subgroup of ^{*L*}G and $\psi \mid_{\operatorname{SL}_2(\mathbb{C})}$ is trivial.

伺 ト イヨト イヨト

Setup for main result

Supercuspidal L-parameters

An *L*-parameter ψ is called *supercuspidal* if $\operatorname{im}(\psi)$ does not lie in a proper parabolic subgroup of ^{*L*}*G* and $\psi \mid_{\operatorname{SL}_2(\mathbb{C})}$ is trivial.

Slogan for supercuspidal *L*-parameters

Supercuspidal *L*-parameters should be those whose *L*-packet consists entirely of supercuspidals.

Elliptic hyperendoscopic group

An extended elliptic hyperendoscopic datum is a sequence of tuples of data $(H_1, s_1, {}^L\eta_1), \ldots, (H_k, s_k, {}^L\eta_k)$ such that $(H_1, s_1, {}^L\eta_1)$ is an extended elliptic endoscopic datum of G, and for i > 1, the tuple $(H_i, s_i, {}^L\eta_i)$ is an extended elliptic endoscopic datum of H_{i-1} .

Elliptic hyperendoscopic group

An extended elliptic hyperendoscopic datum is a sequence of tuples of data $(H_1, s_1, {}^L\eta_1), \ldots, (H_k, s_k, {}^L\eta_k)$ such that $(H_1, s_1, {}^L\eta_1)$ is an extended elliptic endoscopic datum of G, and for i > 1, the tuple $(H_i, s_i, {}^L\eta_i)$ is an extended elliptic endoscopic datum of H_{i-1} .

Slogan for hyperendoscopic groups

They are a set of groups for which an *L*-parameter could factorize through and which is sufficiently large to study the packet structure of a parameter.

・ 同 ト ・ ヨ ト ・ ヨ ト

Elliptic hyperendoscopic group

An extended elliptic hyperendoscopic datum is a sequence of tuples of data $(H_1, s_1, {}^L\eta_1), \ldots, (H_k, s_k, {}^L\eta_k)$ such that $(H_1, s_1, {}^L\eta_1)$ is an extended elliptic endoscopic datum of G, and for i > 1, the tuple $(H_i, s_i, {}^L\eta_i)$ is an extended elliptic endoscopic datum of H_{i-1} .

Slogan for hyperendoscopic groups

They are a set of groups for which an *L*-parameter could factorize through and which is sufficiently large to study the packet structure of a parameter.

Example for hyperendoscopic groups

If G = U(n) then the elliptic hyperendoscopic groups for G are those of the form $U(a_1) \times \cdots \times U(a_m)$ with $a_1 + \cdots + a_m = n$.

Supercuspidal local Langlands correspondence

A supercuspidal local Langlands correspondence for a group G (assumed quasi-split for simplicity) is an association

$$\Pi_{H}: \left\{ \begin{array}{c} \mathsf{Equivalence classes of} \\ \mathsf{Supercuspidal} \ L\text{-parameters} \\ \mathsf{for} \ H \end{array} \right\} \to \left\{ \begin{array}{c} \mathsf{Finite subsets} \\ \mathsf{of } \operatorname{Irr}^{\mathrm{sc}}(H(F)) \end{array} \right\}$$

for every elliptic hyperendoscopic group H of G satisfying the following conditions:

Supercuspidal local Langlands correspondence

A supercuspidal local Langlands correspondence for a group G (assumed quasi-split for simplicity) is an association

$$\Pi_{H}: \left\{ \begin{array}{c} \mathsf{Equivalence classes of} \\ \mathsf{Supercuspidal} \ L\text{-parameters} \\ \mathsf{for} \ H \end{array} \right\} \to \left\{ \begin{array}{c} \mathsf{Finite subsets} \\ \mathsf{of } \operatorname{Irr}^{\mathrm{sc}}(H(F)) \end{array} \right\}$$

for every elliptic hyperendoscopic group H of G satisfying the following conditions:

• (Dis) Packets for distinct parameters are disjoint.

Supercuspidal local Langlands correspondence

A supercuspidal local Langlands correspondence for a group G (assumed quasi-split for simplicity) is an association

$$\Pi_{H}: \left\{ \begin{array}{c} \mathsf{Equivalence classes of} \\ \mathsf{Supercuspidal} \ L\text{-parameters} \\ \mathsf{for} \ H \end{array} \right\} \to \left\{ \begin{array}{c} \mathsf{Finite subsets} \\ \mathsf{of } \operatorname{Irr}^{\mathrm{sc}}(H(F)) \end{array} \right\}$$

for every elliptic hyperendoscopic group H of G satisfying the following conditions:

- (Dis) Packets for distinct parameters are disjoint.
- (Bij) There is a bijection between $\Pi_H(\psi)$ and $\operatorname{Irr}(\overline{C_{\psi}})$.

Supercuspidal local Langlands correspondence

A supercuspidal local Langlands correspondence for a group G (assumed quasi-split for simplicity) is an association

$$\Pi_{H}: \left\{ \begin{array}{c} \mathsf{Equivalence \ classes \ of} \\ \mathsf{Supercuspidal} \ L\text{-parameters} \\ \mathsf{for} \ H \end{array} \right\} \rightarrow \left\{ \begin{array}{c} \mathsf{Finite \ subsets} \\ \mathsf{of} \ \mathrm{Irr}^{\mathrm{sc}}(H(F)) \end{array} \right\}$$

for every elliptic hyperendoscopic group H of G satisfying the following conditions:

- (Dis) Packets for distinct parameters are disjoint.
- (Bij) There is a bijection between $\Pi_H(\psi)$ and $\operatorname{Irr}(\overline{C_{\psi}})$.
- (St) The 'stable character' $S\Theta_{\psi}$ for any ψ is actually stable.

Supercuspidal local Langlands correspondence

A supercuspidal local Langlands correspondence for a group G (assumed quasi-split for simplicity) is an association

$$\Pi_{H}: \left\{ \begin{array}{c} \mathsf{Equivalence \ classes \ of} \\ \mathsf{Supercuspidal} \ L\text{-parameters} \\ \mathsf{for} \ H \end{array} \right\} \rightarrow \left\{ \begin{array}{c} \mathsf{Finite \ subsets} \\ \mathsf{of} \ \mathrm{Irr}^{\mathrm{sc}}(H(F)) \end{array} \right\}$$

for every elliptic hyperendoscopic group H of G satisfying the following conditions:

- (Dis) Packets for distinct parameters are disjoint.
- (Bij) There is a bijection between $\Pi_H(\psi)$ and $\operatorname{Irr}(\overline{C_{\psi}})$.
- (St) The 'stable character' $S\Theta_{\psi}$ for any ψ is actually stable.
- (ECI) The endoscopic character identities hold.

Previous results Main result Further directions and related ideas

Setup for main result (cont.)

Scholze-Shin data

For a group G an Scholze–Shin datum is a collection of functions $\varphi^{\mu}_{\tau,h}$ depending on:

伺 ト イヨ ト イヨト

Previous results Main result Further directions and related ideas

Setup for main result (cont.)

Scholze-Shin data

For a group G an Scholze–Shin datum is a collection of functions $\varphi^{\mu}_{\tau,h}$ depending on:

• (a certain set) of dominant cocharacters μ of hyperendoscopic groups H.

Scholze-Shin data

For a group G an Scholze–Shin datum is a collection of functions $\varphi^{\mu}_{\tau,h}$ depending on:

- (a certain set) of dominant cocharacters μ of hyperendoscopic groups H.
- $\tau \in W_E^+$ (*E* the reflex field of μ).

Scholze-Shin data

For a group G an Scholze–Shin datum is a collection of functions $\varphi^{\mu}_{\tau,h}$ depending on:

- (a certain set) of dominant cocharacters μ of hyperendoscopic groups H.
- $\tau \in W_E^+$ (*E* the reflex field of μ).
- $h \in C^{\infty}_{c}(K_{H}, \mathbb{Q})$ (K_{H} some compact open subgroup of H(F)).

Scholze-Shin data

For a group G an Scholze–Shin datum is a collection of functions $\varphi^{\mu}_{\tau,h}$ depending on:

- (a certain set) of dominant cocharacters μ of hyperendoscopic groups H.
- $\tau \in W_E^+$ (*E* the reflex field of μ).
- $h \in C_c^{\infty}(K_H, \mathbb{Q})$ (K_H some compact open subgroup of H(F)).

Scholze-Shin equations

We say that Π_H satisfies the *Scholze–Shin equations* relative to $\{\varphi_{\tau,h}^{\mu}\}$ if the following equation holds for all ψ :

$$S\Theta_{\psi}(\varphi_{\tau,h}) = \operatorname{tr}\left(\tau \mid (r_{-\mu} \circ \psi) \mid_{W_{E}} \mid \cdot \mid_{E}^{-\langle \rho, \mu \rangle}\right) S\Theta_{\psi}(h).$$

The main result

Theorem (Bertoloni Meli–Y.)

Suppose that G is a 'good' group and that Π^1 and Π^2 are two supercuspidal Langlands correspondences for G which satisfy the Scholze–Shin equations for the same Scholze–Shin datum $\{\varphi^{\mu}_{\tau,h}\}$. Then, $\Pi^1 = \Pi^2$ and the bijections in **(Bij)** are the same.

伺下 イヨト イヨト

The notion of 'good'

Good groups

A group G is *good* if an L-parameter ψ for any hyperendoscopic groups H is determined by the set of Galois representations $\{r_{-\mu} \circ \psi\}$ for all cocharacters μ .

周 ト イ ヨ ト イ ヨ ト

The notion of 'good'

Good groups

A group G is *good* if an L-parameter ψ for any hyperendoscopic groups H is determined by the set of Galois representations $\{r_{-\mu} \circ \psi\}$ for all cocharacters μ .

Examples/Non-examples

Some examples of 'good groups':

Examples	Non-examples
GL _n	SL _n
Un	SO _{2n}
SO_{2n+1}	Sp _{2n}
PGL _n	E ₈
<i>G</i> ₂	

Alex Youcis (IMPAN) (joint with A. Bertoloni Meli (Michigan)) Contact: Alex Youcis (alex.youcis@gmail.com)

Previous results Main result Further directions and related ideas

Broad idea of proof

• If $\Pi^1_H(\psi) = {\pi} = \Pi^2_H(\psi')$ then taking h such that $\Theta_{\pi}(h) \neq 0$ we see that

$$\operatorname{tr}(\tau \mid r_{-\mu} \circ \psi) = \frac{\Theta_{\psi}(\varphi_{\tau,h}^{\mu})}{\Theta_{\pi}(h)} = \operatorname{tr}(\tau \mid r_{-\mu} \circ \psi')$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

implies that $\psi \sim \psi'$.

Broad idea of proof

• If $\Pi^1_H(\psi) = {\pi} = \Pi^2_H(\psi')$ then taking h such that $\Theta_{\pi}(h) \neq 0$ we see that

$$\operatorname{tr}(\tau \mid r_{-\mu} \circ \psi) = \frac{\Theta_{\psi}(\varphi_{\tau,h}^{\mu})}{\Theta_{\pi}(h)} = \operatorname{tr}(\tau \mid r_{-\mu} \circ \psi')$$

implies that $\psi \sim \psi'$.

 The desiderata for a supercuspidal Langlands correspondence non-trivially satisfy *atomic stability*—the fact that if S is a set of representations for which some linear combination is stable, then S is a union of L-packets—this in turn implies that if Π¹_H(ψ) = {π} then {π} = Π²_H(ψ') for some ψ'.

・ 同 ト ・ ヨ ト ・ ヨ ト

Broad idea of proof

• If $\Pi^1_H(\psi) = {\pi} = \Pi^2_H(\psi')$ then taking h such that $\Theta_{\pi}(h) \neq 0$ we see that

$$\operatorname{tr}(\tau \mid r_{-\mu} \circ \psi) = \frac{\Theta_{\psi}(\varphi_{\tau,h}^{\mu})}{\Theta_{\pi}(h)} = \operatorname{tr}(\tau \mid r_{-\mu} \circ \psi')$$

implies that $\psi \sim \psi'$.

The desiderata for a supercuspidal Langlands correspondence non-trivially satisfy *atomic stability*—the fact that if S is a set of representations for which some linear combination is stable, then S is a union of L-packets—this in turn implies that if Π¹_H(ψ) = {π} then {π} = Π²_H(ψ') for some ψ'.
If Π¹_H(ψ) = {π} then Π¹_H(ψ) = Π²_H(ψ).

・ 同 ト ・ ヨ ト ・ ヨ ト

Broad idea of proof

• If $\Pi^1_H(\psi) = {\pi} = \Pi^2_H(\psi')$ then taking *h* such that $\Theta_{\pi}(h) \neq 0$ we see that

$$\operatorname{tr}(\tau \mid r_{-\mu} \circ \psi) = rac{\Theta_{\psi}(\varphi^{\mu}_{\tau,h})}{\Theta_{\pi}(h)} = \operatorname{tr}(\tau \mid r_{-\mu} \circ \psi')$$

implies that $\psi \sim \psi'.$

- The desiderata for a supercuspidal Langlands correspondence non-trivially satisfy *atomic stability*—the fact that if *S* is a set of representations for which some linear combination is stable, then *S* is a union of *L*-packets—this in turn implies that if $\Pi_{H}^{1}(\psi) = \{\pi\}$ then $\{\pi\} = \Pi_{H}^{2}(\psi')$ for some ψ' .
- If $\Pi^1_H(\psi) = \{\pi\}$ then $\Pi^1_H(\psi) = \Pi^2_H(\psi)$.
- Every ψ can be written as η ∘ ψ^{H'} for ψ^{H'} a parameter of some hyperendoscopic group H' of H (and thus of G) such that Π¹_{H'}(ψ^{H'}) is a singleton.

An application

Theorem (Bertoloni Meli–Y.)

Let E/\mathbb{Q}_p be an unramified extension and F the quadratic subextension of E. Let G be the quasi-split unitary group $U_{E/F}(n)^*$ associated to E/F. Then, the local Langlands correspondence for G (as in the work of Mok) satisfies the Scholze–Shin conjecture and is uniquely characterized by this condition.

伺 ト イ ヨ ト イ ヨ

• Result is reminiscient of a 'stable version' of V. Lafforgue's lemma following the work of Richardson.

• • = = • • = =

- Result is reminiscient of a 'stable version' of V. Lafforgue's lemma following the work of Richardson.
- This 'stable version' is useful when applying global methods since usually only stable characters are accessible.

.

- Result is reminiscient of a 'stable version' of V. Lafforgue's lemma following the work of Richardson.
- This 'stable version' is useful when applying global methods since usually only stable characters are accessible.
- Opens up question of whether there is a useful version of our main theorem with Scholze–Shin datum replaced by more general datum indexed by triples (*I*, *f*, {γ_i}) as in Lafforgue's lemma.

周 ト イ ヨ ト イ ヨ ト

- Result is reminiscient of a 'stable version' of V. Lafforgue's lemma following the work of Richardson.
- This 'stable version' is useful when applying global methods since usually only stable characters are accessible.
- Opens up question of whether there is a useful version of our main theorem with Scholze–Shin datum replaced by more general datum indexed by triples (*I*, *f*, {γ_i}) as in Lafforgue's lemma.
- Opens up question of whether there is a useful version of our result in the function field setting.

・ 同 ト ・ ヨ ト ・ ヨ ト

Thanks for listening!

Alex Youcis (IMPAN) (joint with A. Bertoloni Meli (Michigan)) Contact: Alex Youcis (alex.youcis@gmail.com)

★ ∃ → ★ ∃