Serre's conjecture and two notions of minimal weight

Hanneke Wiersema

May 31, 2020

King's College London

We write $G_{\mathbb{Q}}$ for the absolute Galois group of \mathbb{Q} . One way to study this group is to study its representations. We will look at mod p Galois representations, e.g.

Example

The mod *p* cyclotomic character $\omega : G_{\mathbb{Q}} \to \overline{\mathbb{F}}_{p}^{\times}$ defined by

$$\sigma(\zeta_p) = \zeta_p^{\omega(\sigma)}$$

is a 1-dimensional mod p Galois representation.

For this talk we will look at

$$\rho: G_{\mathbb{Q}} \to \mathrm{GL}_2(\overline{\mathbb{F}}_p).$$

Let $\rho: G_{\mathbb{Q}} \to \mathsf{GL}_2(\overline{\mathbb{F}}_p)$ be irreducible, continuous and odd.

Theorem (Serre's conjecture)

There exists a modular form f such that $\rho_f \cong \rho$. Moreover, one can explicitly describe the minimal weight $k(\rho)$ and level $N(\rho)$ that one can take for f.

This $k(\rho)$ is completely determined by ρ_p , the restriction of ρ to $G_{\mathbb{Q}_p}$.

Example

Suppose ρ_p is reducible and

$$\omega|_{I_p} \sim \begin{pmatrix} \omega^a & 0\\ 0 & 1 \end{pmatrix}$$

with $2 \le a \le p-3$ and ω the mod p cyclotomic character, then $k(\rho) = a + 1$.

We write $\operatorname{Sym}^{k-2} \overline{\mathbb{F}}_{p}^{2}$ for the (k-2)-th symmetric power of the standard representation of $GL_2(\mathbb{F}_n)$ on $\overline{\mathbb{F}}_n^2$

Proposition (Ash-Stevens) Let $k \ge 2$. Then ρ is modular of level N and weight k if and only if ρ appears in $H^1(\Gamma_1(N), \operatorname{Sym}^{k-2}\overline{\mathbb{F}}_p^2)$. Moreover, ρ is modular of level N and weight k if and only if ρ appears in $H^1(\Gamma_1(N), V)$, with V a Jordan–Hölder constituent of $\operatorname{Sym}^{k-2}\overline{\mathbb{F}}_{p}^{2}$

We can explicitly describe such constituents!

Example

The representation $\operatorname{Sym}^{p} \overline{\mathbb{F}}_{p}^{2}$ has two constituents: $\operatorname{Sym}^{1} \overline{\mathbb{F}}_{p}^{2}$ and det \otimes Sym^{*p*-2} $\overline{\mathbb{F}}_{p}^{2}$.

Definition (Serre weights) The V are irreducible representations of $GL_2(\mathbb{F}_p)$ over $\overline{\mathbb{F}}_p$,

$$V_{t,s} = \det^s \otimes \operatorname{Sym}^{t-1} \overline{\mathbb{F}}_p^2, \quad 0 \le s < p-1, 1 \le t \le p$$

We call these Serre weights.

Buzzard, Diamond and Jarvis define a set of Serre weights $W(\rho)$:

Theorem (The BDJ conjecture in the classical case) If $\rho: G_{\mathbb{Q}} \to GL_2(\overline{\mathbb{F}}_p)$ is modular, then

 $W(\rho) = \{V | \rho \text{ is modular of weight } V\}.$

Remark

The recipe for $W(\rho)$ depends purely on the local representation ρ_p .

Example Let

$$ho|_{I_p} \sim egin{pmatrix} \omega^a & 0 \ 0 & 1 \end{pmatrix}$$

as before, then

$$W(\rho) = \{V_{a,0}, V_{p-1-a,a}\}.$$

Question: How to compare this with $k(\rho)$?

Definition (Minimal weight)

$$k_{\min}(V_{t,s}) = \min_{k} \{k \ge 2 \mid V_{t,s} \in \mathsf{JH}(\mathsf{Sym}^{k-2}\,\overline{\mathbb{F}}_p^2)\}$$

e.g. for
$$V_{t,0} = \operatorname{Sym}^{t-1} \overline{\mathbb{F}}_p^{2}$$
, we see $k_{\min}(V_{t,0}) = t + 1$.

Proposition

$$k_{\min}(V_{t,s}) = egin{cases} s(p+1)+t+1 & s+t$$

Definition: We set $k_{\min}(W(\rho)) = \min_k \{k_{\min}(V_{t,s}) \mid V_{t,s} \in W(\rho)\}.$

Example Again let

$$ho|_{I_p} \sim egin{pmatrix} \omega^a & 0 \ 0 & 1 \end{pmatrix}$$

as before, recall $W(\rho) = \{V_{a,0}, V_{\rho-1-a,a}\}.$

We find $k_{\min}(V_{a,0}) = a+1$ and $k_{\min}(V_{p-1-a,a}) = ap+p$, so

$$k_{\min}(W(\rho)) = a + 1 = k(\rho)$$

Theorem (Equality of two weight invariants I) $k(\rho) = k_{\min}(W(\rho))$

Generalisation to the totally real field case

- $\rho: G_{\mathbb{Q}} \to \mathrm{GL}_2(\overline{\mathbb{F}}_p)$
- $\rho: G_K \to \operatorname{GL}_2(\overline{\mathbb{F}}_p), K$ totally real number field
- weight of a mod p modular form
- weight of a mod *p* Hilbert modular form

These are the objects for *geometric modularity*, we again study algebraic modularity in which the weights are representations of $GL_2(k_p)$.

Let p be an odd prime and let

$$\rho: G_{\mathcal{K}} \to \mathsf{GL}_2(\overline{\mathbb{F}}_p)$$

be a continuous, totally odd, irreducible representation with K a totally real field in which p is unramified and for simplicity assume p is inert. Let k_p be the residue field at $\mathfrak{p}, \mathfrak{p}$ lying above p. Let $\Sigma = \{\tau : k_p \to \overline{\mathbb{F}}_p\}$.

Definition (More general Serre weights)

$$V_{\vec{b},\vec{a}} = \bigotimes_{\tau \in \Sigma} \left(\det^{a_{\tau}} \otimes_{k_{\mathfrak{p}}} \operatorname{Sym}^{b_{\tau}-1} k_{\mathfrak{p}}^{2} \right) \otimes_{k_{\mathfrak{p}},\tau} \overline{\mathbb{F}}_{\rho}.$$

with $\Sigma = \{\tau : k_{\mathfrak{p}} \to \overline{\mathbb{F}}_{p}\}$ and $b_{\tau} \leq p$ for all $\tau \in \Sigma$.

Theorem (The BDJ conjecture) If $\rho : G_K \to GL_2(\overline{\mathbb{F}}_p)$ is modular, then

 $W(\rho) = \{V | \rho \text{ is modular of weight } V\}.$

Question

How do we define analogues of $k_{\min}(V_{t,s})$ and $k_{\min}(W(\rho))$?

We first introduce a partial ordering.

Remark

For simplicity we will restrict ourselves to the quadratic case - but all definitions to come have higher degree analogues.

Hasse cone and the partial ordering

We set

$$\Xi_{\mathsf{Ha}}^{\mathbb{Z}} = \Big\{ x \begin{pmatrix} -1 \\ p \end{pmatrix} + y \begin{pmatrix} p \\ -1 \end{pmatrix} \in \mathbb{Z}^2 \mid x, y \ge 0 \Big\},$$

where the vectors are weights of partial Hasse invariants.



Definition: We say $\vec{k} \leq_{Ha} \vec{k'}$ when $\vec{k'} - \vec{k} \in \Xi_{Ha}^{\mathbb{Z}}$.

Figure 1: The Hasse cone for K quadratic

Minimal weight cone

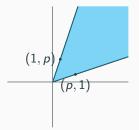


Figure 2: The minimal cone in the quadratic case

We have

$$\Xi_{\min}^{\mathbb{Q}} = \Big\{ (x, y) \in \mathbb{Q}^2 \mid px \ge y, py \ge x \Big\}.$$

Minimal algebraic weight

We define

$$\begin{aligned} k_{\min}(V_{\vec{b},\vec{a}}) &= \min_{\geq \mathsf{Ha}} \left\{ \vec{k} \in \mathbb{Z}_{\geq 2}^2 \cap \Xi_{\min}^{\mathbb{Q}} \mid V_{\vec{b},\vec{a}} \in \mathsf{JH}\left(\bigotimes_{\tau \in \Sigma} \mathsf{Sym}^{\vec{k}_{\tau}-2} \, k_{\mathfrak{p}}^2 \otimes_{\tau} \overline{\mathbb{F}}_p\right) \right\}, \\ \text{e.g. for } V_{(b_0,b_1),(0,0)} &= \mathsf{Sym}^{b_0-1} \, k_{\mathfrak{p}}^2 \otimes \mathsf{Sym}^{b_1-1} \, k_{\mathfrak{p}}^2, \text{ we see} \\ k_{\min}(V_{(b_0,b_1),(0,0)}) &= (b_0+1, b_1+1). \end{aligned}$$
Conjecture

Let p be odd and $k_{\min}(V_{\vec{b},\vec{a}})$ be as above, then we have

$$k_{\min}(V_{ec{b},ec{a}}) = \sum_{ au \in \Sigma} (a_{ au}(e_{ au} + pe_{\mathsf{Fr}^{-1} \circ au}) + (b_{ au} + 1)e_{ au}) - \sum_{\substack{ au \in \Sigma \mid \\ a_{ au} + b_{ au} \ge p}} (p - b_{ au})(pe_{\mathsf{Fr}^{-1} \circ au} - e_{ au}).$$

We analogously define

$$k_{\min}(W(\rho)) = \min_{\geq \mathsf{Ha}} \{k_{\min}(V_{\vec{b},\vec{a}}) \mid V_{\vec{b},\vec{a}} \in W(\rho)\}$$

Minimal algebraic weight vs minimal geometric weight

Question: Is it possible to define $k(\rho)$ such that also in the general case we find: $k(\rho) = k_{\min}(W(\rho))$?

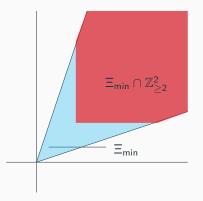


Figure 3: Different weight spaces in the quadratic case

Questions?