Intersection cohomology & *L*-functions Cross Atlantic Representation Theory and Other topics ONline

Yiannis Sakellaridis (Johns Hopkins); joint w. Jonathan Wang (MIT)

May 29-31, 2020

Abstract

I will report on ongoing joint work with Jonathan Wang, relating the intersection complex of the arc space of a spherical variety to an unramified local *L*-function. This is a broad generalization of Iwasawa–Tate theory ($G = \mathbb{G}_m, X = \mathbb{A}^1$), where the local unramified *L*-factors are represented by the characteristic function of the integers \mathfrak{o} of a non-Archimedean field. For more general groups *G* and possibly singular spherical *G*-varieties *X*, the characteristic function of $X(\mathfrak{o})$ is not the correct object to consider, and has to be replaced by a function obtained as the Frobenius trace of the intersection complex of the arc space of *X*. In special cases of horospherical, toric, affine homogeneous spherical varieties, or certain reductive monoids, the relation of this function to *L*-functions was previously described in works of Braverman–Finkelberg–Gaitsgory–Mirković, Bouthier–Ngô and myself. Our current work describes these IC functions in a very general setting, relating the IC function of the arc space to an *L*-value determined by the geometry of the spherical variety.

1	Intr	oduction	2	
2	Exa	mples with smooth spaces	2	
	2.1	Iwasawa–Tate theory	2	
	2.2	Horospherical spaces		
	2.3	Hecke period	3	
	2.4	Naive expectation	4	
	2.5	Basic family of examples		
3	Affine embeddings and IC functions 5			
	3.1	Affine embeddings	5	
	3.2	The IC function	5	
	3.3	BFGM	5	
	3.4	Global models		
	3.5	Example: models for toric varieties (Bouthier–Ngô–S.)		
	3.6	Zastava models		
4	The result and proof			
		Statement	7	
	4.2	Function-theoretic interpretation		
	4.3	Discussion of the main theorem		
		4.3.1 What is non-trivial about the main theorem?		
		4.3.2 How do we address these issues?		

1 Introduction

Let $F = \mathbb{F}_q((\varpi)) \supset \mathfrak{o} = \mathbb{F}_q[[\varpi]]$, X/\mathbb{F}_q affine, then $X(\mathfrak{o}) = \mathcal{L}X(\mathbb{F}_q)$, $\mathcal{L}X = \text{the arc space of } X, \mathcal{L}X(R) = \lim_{\leftarrow} X(R[\varpi]/\varpi^n) = \text{Maps}(D \to X), \quad (D = \text{spec} \mathbb{F}_q[[\varpi]]),$ e.g., $\mathfrak{o} = \lim_{\leftarrow} \sigma/\varpi^n$, and we view \mathfrak{o}/ϖ^n as the \mathbb{F}_q -points of an *n*-dimensional vector space.

Goal of today's lecture:

Let $X \leftarrow G$ spherical, i.e., (normal &) $B \subset G$ has an open dense orbit. Will describe a relationship between the geometry of $\mathcal{L}X$ and (unramified) *L*-functions for *G*. Local unramified *L*-function: determined by a graded representation of $\check{G} = \check{G}(\mathbb{C})$, i.e., $\check{G} \times \mathbb{G}_m \xrightarrow{\rho_X} \operatorname{GL}(V_X)$ and a Satake parameter $\langle \operatorname{Frob} \rangle \xrightarrow{\phi} \check{G}$:

$$L(\phi, \rho_X) = \prod_i \det(I - q^{-\frac{i}{2}} \rho_X^{(i)} \circ \phi(\operatorname{Frob})).$$

The geometry will be reflected in the *intersection complex* $IC_{\mathcal{L}X}$. Through Frobenius trace (sheaf-function dictionary), it gives rise to a "basic function" in some "Schwartz space" $\Phi_0 \in \mathcal{S}(X(\mathfrak{o}))^{G(\mathfrak{o})}$.

2 Examples with smooth spaces

2.1 Iwasawa–Tate theory

 $X = \mathbb{A}^1 \backsim \mathbb{G}_m$, smooth, hence

$$\Phi_0 = 1_{\mathfrak{o}} = \sum_{n \ge 0} 1_{\varpi^n \mathfrak{o}^{\times}} = \sum_{n \ge 0} \varpi^{-n} \cdot 1_{\mathfrak{o}^{\times}} \Rightarrow$$
$$\int \Phi_0(a)\chi(a)d^{\times}a = \sum_{n \ge 0} \chi(\varpi)^n = \frac{1}{1 - \chi(\varpi)} = L(\chi, 0).$$

2.2 Horospherical spaces

 $X = \mathbb{A}^2 \leftrightarrow X^{\bullet} = N \setminus \mathrm{SL}_2$, smooth, notice that $X(\mathfrak{o}) = \mathfrak{o}^2$, while $X^{\bullet}(\mathfrak{o}) = \mathfrak{o}^2 \setminus \mathfrak{p}^2$,

$$\Phi_0 = \mathbf{1}_{X(\mathfrak{o})} = \sum_{n \ge 0} q^{-n} \overline{\omega}^{-n} \cdot \mathbf{1}_{X^{\bullet}(\mathfrak{o})} = \frac{1}{1 - q^{-1} \overline{\omega}^{-1}} \mathbf{1}_{X^{\bullet}(\mathfrak{o})},$$

where $a \cdot \text{denotes the action of } a \in F^{\times}$ by scaling, normalized so that it is unitary, i.e., $a \cdot f(x, y) = |a|f(ax, ay)$. If we integrate against an unramified character of F^{\times} , this becomes

$$\int \Phi_0 \left(\begin{pmatrix} 1 & * \\ & 1 \end{pmatrix} \begin{pmatrix} a & \\ & a^{-1} \end{pmatrix} \right) \chi^{-1}(a) |a|^{-1} d^{\times} a = L(\chi, 1)$$

Better said, the torus A = B/N acts on X, and ϖ^{-1} is (normalized) translation by $e^{\check{\alpha}}(\varpi)$, so

$$\Phi_0 = \frac{1}{1 - q^{-1} e^{\check{\alpha}}(\varpi)} \cdot 1_{X^{\bullet}(\mathfrak{o})}.$$

More generally, we'll write functions on $N \setminus G(F)/K$ ($K = G(\mathfrak{o})$) as series in the cocharacter lattice (using exponential notation); a term $\frac{1}{1-q^{-s}e^{\tilde{\lambda}}}$ gives rise to $L(\chi, \check{\lambda}, s)$ after (normalized) integration against the unramified character χ^{-1} of A = B/N.

(This calculation is familiar from a global comparison of Eisenstein series: we can define

$$E(z,s) = \sum_{(m,n)=1} \frac{y^{s+\frac{1}{2}}}{|mz+n|^{2s+1}} \text{ vs. } E^*(z,s) = \sum_{(m,n)\neq(0,0)} \frac{y^{s+\frac{1}{2}}}{|mz+n|^{2s+1}}$$

Then $E^*(z,s) = \zeta(2s+1)E(z,s) = L(\delta^s \circ e^{\check{\alpha}}, 1)E(z,s).$)

2.3 Hecke period

 $X = \mathbb{G}_m \setminus \mathrm{PGL}_2 = \begin{pmatrix} * \\ & * \end{pmatrix} \setminus \mathrm{PGL}_2, \ \Phi_0 = 1_{X(\mathfrak{o})}.$

Various related ways to extract L-values out of this function:

• $W_X(g) := \int_F \Phi_0\left(\begin{pmatrix} 1 & x \\ & 1 \end{pmatrix}g\right)\psi^{-1}(x)dx \in C^{\infty}((N,\psi)\backslash G)^K$, and interpret the output in terms of the Casselman–Shalika formula; this is directly related to the calculation of global period integrals over the torus in terms of Fourier coefficients of modular forms:

$$\int_{k^{\times} \setminus \mathbb{A}^{\times}} f \begin{pmatrix} a \\ & 1 \end{pmatrix} d^{\times} a = \int_{\mathbb{A}^{\times}} \operatorname{Whitt}_{f} \begin{pmatrix} a \\ & 1 \end{pmatrix} d^{\times} a.$$

•
$$P_X(g) := \int_F \Phi_0 \left(\begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 & x \\ 1 \end{pmatrix} g \right) dx \in C^{\infty}(N \setminus G)^K,$$

calculate: $P_X = 1_{NK} + 2\sum_{n \ge 1} q^{-n} 1_{N \begin{pmatrix} \varpi^n \\ 1 \end{pmatrix} K} = (1 + q^{-\frac{1}{2}} \varpi \cdot) \left(\sum_{n \ge 0} q^{-n} 1_{N \begin{pmatrix} \varpi^n \\ 1 \end{pmatrix} K} \right) =$
 $= (1 + q^{-\frac{1}{2}} e^{-\frac{\alpha}{2}}(\varpi)) \sum_{n \ge 0} q^{-\frac{n}{2}} e^{-n\frac{\alpha}{2}(\varpi)} \cdot 1_{NK} = \frac{1 + q^{-\frac{1}{2}} e^{-\frac{\alpha}{2}}(\varpi)}{1 - q^{-\frac{1}{2}} e^{-\frac{\alpha}{2}}(\varpi)} \cdot 1_{NK} = \frac{1 - q^{-1} e^{-\alpha}(\varpi)}{(1 - q^{-\frac{1}{2}} e^{-\frac{\alpha}{2}}(\varpi))^2} \cdot 1_{NK}$

Explanation of this calculation: $Y := X/N = \mathbb{G}_m \backslash \operatorname{PGL}_2/N = \mathbb{G}_m \backslash \operatorname{SL}_2/N = (\mathbb{A}^2 \smallsetminus \{0\})/\mathbb{G}_m$, \mathbb{G}_m acts as $(x, y) \cdot a = (ax, a^{-1}y)$. The quotient is a non-separated scheme, isomorphic to the affine line with doubled origin. At the level of \mathfrak{o} -points, it is the union of \mathfrak{o} with \mathfrak{o} over the common open subset \mathfrak{o}^{\times} . The integral is computing a pushforward $X/N \to X /\!\!/ N = \mathbb{A}^1$ of $1_{Y(\mathfrak{o})}$; the value is 1 on \mathfrak{o}^{\times} , and 2 on \mathfrak{p} (up to the measure factor q^{-n}).

• Plancherel formula: The above integral $P_X = R_X(\Phi_0)$, where R_X is the "X-Radon-transform" = integral over generic horocycles (=N-orbits) on X. If we combine this with the Radon transform/standard intertwining operator R_0 for $N^-\backslash G$: $R_0(\phi)(g) = \int_N \phi(ng) dn$,

$$C_c^{\infty}(X) \xrightarrow{R_X} C^{\infty}(N \setminus G) \xleftarrow{R_0} C_c^{\infty}(N^- \setminus G)$$

then $B_0 := R_0^{-1} \circ R_X : C_c^{\infty}(X) \to C^{\infty}(N^- \backslash G)$ Bernstein asymptotics map, determines the Plancherel decomposition for $C_c^{\infty}(X)$; for Φ_0 ,

$$B_0(\Phi_0) = \frac{1 - e^{-\check{\alpha}}(\varpi)}{(1 - q^{-\frac{1}{2}}e^{-\frac{\check{\alpha}}{2}}(\varpi))^2} \cdot 1_{N-K}$$

(because $R_0(1_{N^-K}) = \frac{1-q^{-1}e^{-\check{\alpha}}(\varpi)}{1-e^{-\check{\alpha}}(\varpi)}1_{NK}$), and

$$|\Phi_0|^2 = \int_{\check{A}/W} \frac{|1 - e^{-\check{\alpha}}(\hat{\chi})|^2}{(1 - q^{-\frac{1}{2}}e^{\frac{-\check{\alpha}}{2}}(\hat{\chi}))^2(1 - q^{-\frac{1}{2}}e^{\frac{\check{\alpha}}{2}}(\hat{\chi}))^2} d\hat{\chi} = \int_{\check{A}/W} L(\pi_{\chi}, \operatorname{Std}, \frac{1}{2})^2(|\Delta(\hat{\chi})|^2 d\hat{\chi}),$$

 π_{χ} : the principal series representation induced from χ , $\hat{\chi} = \chi(\varpi) \in \hat{A}$ its Satake parameter, $|\Delta(\hat{\chi})|^2 d\hat{\chi}$: the Haar measure on conjucacy classes in the compact form of \check{G} .

2.4 Naive expectation

Open *B*-orbit on *X*: $X^{\circ} \simeq A_1 \setminus B$, assume A_1 contained in a torus (possibly trivial). Let $A_X = A/A_1$, and integrate against *N*-orbits on X° , to obtain a function on $NA_1 \setminus G/K = A_X(F)/A_X(\mathfrak{o})$:

$$C_c^{\infty}(X(F))^K \ni \Phi \mapsto R_X(\Phi)(a) = \int_N \Phi(x_0 n \cdot a) dn,$$

where $x_0 \in X^\circ$.

It can be expected that for "good" input Φ the output will be (up to some standard factors)

$$P_X \approx \prod_i \frac{1}{1 - q^{-s_i} e^{\check{\lambda}_i}(\varpi)} \cdot 1_{NA_1K}$$

with Mellin transform $\widehat{P}_X(\chi)\widehat{P}_X(\chi^{-1}) = L(\pi_{\chi}, \rho_X)$ for some graded representation ρ_X of \check{G}_X (the "dual group" of X, with maximal torus \check{A}_X).

2.5 Basic family of examples

Let X^{\bullet} be the quotient of $(SL_2)^n$ by the subgroup H_n , where:

$$H_n = \left\{ \left(\begin{array}{cc} 1 & x_1 \\ & 1 \end{array} \right) \times \left(\begin{array}{cc} 1 & x_2 \\ & 1 \end{array} \right) \times \cdots \times \left(\begin{array}{cc} 1 & x_n \\ & 1 \end{array} \right) \middle| x_1 + x_2 + \cdots + x_n = 0 \right\}.$$

It has an action of $G = (\mathbb{G}_m \times (\mathrm{SL}_2)^n) / \pm 1$.

• n = 1, <u>Hecke</u>: The "naive expectation" holds in this case for $\Phi_0 = 1_{X^{\bullet}(\mathfrak{o})}$, as (essentially) we saw above, with $\rho_X = \operatorname{Std} \oplus \operatorname{Std}^{\vee} \backsim \check{G} = \operatorname{GL}_2$.

It corresponds to the global Hecke period $\int_{[\mathbb{G}_m]} f \begin{pmatrix} a \\ 1 \end{pmatrix} |a|^s da$, represents $L(\pi, \text{Std}, \frac{1}{2} + s)$.

- n = 2, Rankin–Selberg: The "naive expectation" holds in this case for $\Phi_0 = 1_{X \bullet (\mathfrak{o})}$ or $1_{X(\mathfrak{o})}$, where $X^{\bullet} \hookrightarrow X = \mathbb{A}^2 \times {}^{\mathrm{GL}_2} G$, with $\rho_X = \operatorname{Std} \otimes \operatorname{Std} \oplus \operatorname{Std}^{\vee} \otimes \operatorname{Std}^{\vee}$. It corresponds to the global Rankin–Selberg period $\int_{[\operatorname{GL}_2]} f_1(g) f_2(g) E^*(g, \frac{1}{2} + s) dg$, represents $L(\pi_1 \times \pi_2, \frac{1}{2} + s)$.
- n = 3, the "naive expectation" doesn't work for $1_{X \bullet (\mathfrak{o})}$: although one would expect to get $L(\pi_1 \times \pi_2 \times \pi_3, \frac{1}{2} + s)$, there is a numerator which doesn't correspond to an *L*-function. However, $X^{\bullet} \hookrightarrow X^{\dagger} = [S, S] \setminus \text{Sp}_6$ (one of the "low rank accidental isomorphisms" for spherical varieties, and the expectation holds for $1_{X^{\dagger}(\mathfrak{o})}$) which however is not compactly supported on X(F).

It corresponds to the global integral of <u>Garrett</u>: $\int_{[G]} f(g) E_{\text{Siegel}}(g, \frac{1}{2} + s) dg$, represents $L(\pi_1 \times \pi_2 \times \pi_3, \frac{1}{2} + s)$.

• $n \ge 4$?

3 Affine embeddings and IC functions

Our naive expectation is missing some ingredients:

- 1. X should be *affine* (the case of $U_P \setminus G$, $[P, P] \setminus G$ is also OK, because it differs from its affine completion by an *L*-function, but this is the only such case);
- 2. If X is singular, $1_{X(\mathfrak{o})}$ should be replaced by $\Phi_0 = the IC$ function.

3.1 Affine embeddings

As we saw, the choice of embedding matters, e.g., $\mathbb{G}_m \hookrightarrow \mathbb{A}^1$ in Tate's thesis, the embedding is responsible for an extra factor of $L(\chi, \frac{1}{2})$. (Shifted by $\frac{1}{2}$ here, by considering L^2 -normalized action.)

Direct generalizations:

- $X^{\bullet} = \operatorname{GL}_n \rightarrowtail \operatorname{GL}_n^2$, $X^{\bullet} \hookrightarrow X = \operatorname{Mat}_n$, Godement–Jacquet, the embedding is responsible for an extra factor of $L(\pi, \frac{1}{2})$.
- (Split) affine toric variety $T \hookrightarrow \overline{T}$, determined by a saturated, finitely generated, strictly convex submonoid $\mathfrak{c} \subset \check{\Lambda} = \operatorname{Hom}(\mathbb{G}_m, T).$

If $\mathfrak{c} = \mathbb{N}^r$, \overline{T} is a product of \mathbb{G}_m 's and \mathbb{G}_a 's (the latter indexed by the basis elements $\check{\lambda}_1, \ldots, \check{\lambda}_r$ of \mathfrak{c}). Then $1_{\overline{T}(\mathfrak{o})}$ corresponds to $\prod_i L(\chi, \check{\lambda}_i, \frac{1}{2})$.

But if \mathfrak{c} is not free $\Leftrightarrow \overline{T}$ is singular, $1_{\overline{T}(\mathfrak{o})}$ its Mellin transform is not an L-function.

 Back to GL_n and more general reductive groups H, there exist various H × H-equivariant affine embeddings ("reductive monoids") H → H
, e.g., the L-monoids (Ngô) determined by a heighest weight
[×]
 [×]
 [×]
 for the dual group. Almost all singular.

3.2 The IC function

Now we start thinking of $X(\mathfrak{o})$ as $\mathcal{L}X(\mathbb{F}_q) = \operatorname{Maps}(D \to X)$, $D = \operatorname{spec} \mathbb{F}_q[[\varpi]]$. This is an *infinite-dimensional ind-scheme*, and thus does not have a good theory of perverse sheaves. (May be OK soon, based on recent work of Bouthier–Kazhdan.) However, Grinberg–Kazhdan and Drinfeld proved that in a formal neighborhood of a *non-degenerate arc* $\gamma: D \to X$ (i.e., D^* lies in the smooth locus X^{sm}), the singularities are of finite type:

$$\mathcal{L}X_{\gamma} \simeq Y_{\gamma'} \times D^{\infty},$$

where $\gamma' \in Y$: a scheme of finite type. This allows one to define the *IC function* as

$$\Phi_0(\gamma) = \operatorname{tr}(\operatorname{Frob}^{-1}, IC_{\gamma'}^Y[-\dim Y]),$$

where IC^Y is the intersection complex of Y (a perverse sheaf obtained as the intermediate extension of the constant sheaf on the smooth locus). One can show [Bouthier–Ngô–S.] that $\Phi_0 \in C^{\infty}(X^{sm}(F) \cap X(\mathfrak{o}))$ is independent of the model Y chosen.

3.3 BFGM

Example: $X = \overline{N \setminus G}^{\text{aff}} = \text{spec} \mathbb{F}_q[N \setminus G]$, G simply connected, then Braverman–Finkelberg–Gaitsgory–Mirković have computed:

$$\Phi_0 = \prod_{\check{\alpha}>0} \frac{1}{1-q^{-1}e^{\check{\alpha}}} \cdot \mathbf{1}_{NK} = L(\check{\mathfrak{n}}, 1)$$

i.e., supported on the negative coroot lattice, and equal to a deformation of Kostant's partition function:

 $\Phi_0(\check{\lambda}(\varpi)) = q^{-\langle\check{\lambda},\rho\rangle} \sum_P q^{-|P|}$, where *P* runs over all partitions of $\check{\lambda}$ into a sum of negative roots.

3.4 Global models

To produce the finite-dimensional models of the Grinberg–Kazhdan–Drinfeld theorem, we can replace $\mathcal{L}X = \text{Maps}(D \to X)$ with $M_X = \text{Maps}(C \to X/G)$, the stack classifying *G*-bundles \mathscr{G} on a smooth projective curve *C*, together with a *G*-equivariant morphism $\sigma : \mathscr{G} \to X$. Fixing a point $c \in C$, we have a formally smooth cover $\hat{M}_X \to M_X$, where \hat{M}_X denotes the above data together with a trivialization of \mathscr{G} on the formal neighborhood D_c , and \hat{M}_X maps to $\mathcal{L}X$. If, for $\gamma' = (\mathscr{G}, \sigma) \in M_X$ with $\sigma|_{C \smallsetminus \{c\}}$ in X^{sm} , then the map $\hat{M}_X \to \mathcal{L}X$ is formally smooth at every preimage of γ' .

Upshot: To compute the IC function for $\mathcal{L}X$, it suffices to compute the stalk of IC_{M_X} at such a point γ' .

3.5 Example: models for toric varieties (Bouthier–Ngô–S.)

First, consider $X = \mathbb{A}^1 \frown G = \mathbb{G}_m$. The global model M^{\bullet}_X (where $\bullet :=$ generically in the open *G*-orbit) classifies line bundles on *C* together with a section, hence is the scheme Sym[•]*C* of effective divisors on *X*.

For a torus T and a smooth toric variety X described by a monoid $\mathfrak{c}_X \simeq \mathbb{N}^r \subset \operatorname{Hom}(\mathbb{G}_m, T)$, we similarly have $M_X^{\bullet} = (\operatorname{Sym}^{\bullet} C)^r$, the scheme of \mathfrak{c}_X -valued divisors.

If X is not smooth $\Leftrightarrow \mathfrak{c}_X$ is not free, the scheme of \mathfrak{c}_X -valued divisors turns out to be singular. For every $\lambda \in \mathfrak{c}_X$ (representing an orbit in $(X(\mathfrak{o}) \cap X^{\bullet}(F))/G(\mathfrak{o})$), there are several irreducible components intersecting at the point $\gamma' \in M_X$ as above. They are indexed by partitions P of λ into the *indecomposable* elements λ_i of \mathfrak{c}_X , and for each such partition, the normalization of the component is equal to $\operatorname{Sym}^{|P|}C$.

It follows that the IC function is $\Phi_0(\check{\lambda}(\varpi)) = \sum_P q^{-\frac{|P|}{2}}$, i.e.,

$$\Phi_0 = \prod_{\check{\lambda}_i: \text{ indecomposable}} \frac{1}{1 - q^{-\frac{1}{2}e^{-\check{\lambda}_i}}} \cdot 1_{T(\mathfrak{o})}$$

3.6 Zastava models

(Zastava = flag in Croatian.)

Assume (for simplicitly of exposition) that *B* acts freely on the open orbit X° .

The Zastava model is defined as $Z_X = \text{Maps}(C \to X/B)^\circ$ and is a *scheme* under the above hypotheses. Moreover, if we consider the toric variety $X \parallel N$ for A = B/N, we have a natural map $Z_X \to M^{\bullet}_{X \parallel N} = Z_{X \parallel N}$ (covered in §3.5).

Example 3.6.1. For $X = \mathbb{G}_m \setminus PGL_2$, we have seen that X/N = the affine line with doubled origin, so $X /\!\!/ N$ = the affine line, $Z_{X/\!/ N} = Sym^{\bullet}C$ (classifying line bundles + a non-zero section), and Z_X is its finite cover that labels each zero by one of the two points over the origin, i.e., $Z_X = Sym^{\bullet}C \times Sym^{\bullet}C$ (where \times means: the divisors are disjoint).

The problem at hand, precisely formulated:

Compute the pushforward of the IC sheaf under $Z_X \rightarrow Z_{X/\!/N}$.

This corresponds to the pushforward/X-Radon transform under $X(\mathfrak{o}) \to X /\!\!/ N(\mathfrak{o})$.

Remark 3.6.2. In other words, we are not asking for an explicit description of the IC function as a function on $X^{\bullet}(F) \cap X(\mathfrak{o})$, but for its image under the Radon transform, related to its spectral/Plancherel decomposition, that will allow us to relate it to *L*-functions.

4 The result and proof

From now on, we will assume that $\check{G}_X = \check{G}$. This means two things:

- *B* acts freely on the open orbit *X*°;
- for every simple root α , the PGL₂-variety $X^{\circ}P_{\alpha}/\mathcal{R}(P_{\alpha})$ is isomorphic to $\mathbb{G}_m \setminus PGL_2$.

Such is, e.g., the family of examples of $\S 2.5$.

4.1 Statement

For the homogeneous part $X^{\bullet} = H \setminus G$, the quotient X^{\bullet} / N is a toric variety for A = B/N, corresponding to a monoid \mathfrak{c}_X of coweights; we will assume (as we may, by passing to an abelian cover) that \mathfrak{c}_X is free, rank r. Its basis elements $\check{\nu}_i$, $i = 1, \ldots, r$, correspond to the *colors*, i.e., B-stable divisors in X^{\bullet} , with $\check{\nu}_i$ being the valuation induced by the corresponding color on $\mathbb{F}_q(X)^{(B)}$. (Some non-degeneracy assumption here, again by passing to an abelian cover, to avoid "double points" like $\mathbb{G}_m \setminus \mathrm{PGL}_2$ — replace by $\mathbb{G}_m \setminus \mathrm{GL}_2$. Also assuming: $p \gg 1$.)

Our results distinguish between the case of the minimal affine embedding $\overline{X^{\bullet}}^{\text{aff}} = \operatorname{spec} \mathbb{F}_q[X^{\bullet}]$ and other affine embeddings. I will only present the case of $X = \overline{X^{\bullet}}^{\text{aff}}$.

We have a map $X/N \to X \parallel N$. Our assumptions imply that it is an isomorphism in codimension one.

The result is best formulated for the compactified Zastava model: instead of

$$Z_X = \operatorname{Maps}(C \to X/B)^{\circ} = \operatorname{Maps}(C \to (X/N)/A)^{\circ} = \operatorname{Maps}(C \to (X \times N \setminus G)/A \times G)^{\bullet},$$

consider

$$\overline{Z}_X = \operatorname{Maps}(C \to (X \times \overline{N \setminus G}) / A \times G)^{\bullet},$$

where $\overline{N \setminus G}$ is the affine closure of $N \setminus G$.

Let $\check{\Theta}$ be the set of all *W*-translates of the coweights $\check{\nu}_i$; write $\check{\Theta}^+$ for those that belong to the cone spanned by the $\check{\nu}_i$'s.

Theorem 4.1.1 (S.–Wang). Consider the compactified Zastava model \overline{Z}_X , and its map π to the corresponding space for $X \not\parallel N$:

$$Z_{X/\!\!/N} = \operatorname{Maps}(C \to (X/\!\!/ N)/A)^{\circ} = (\operatorname{Sym}^{\bullet}C)^r$$
 (the space of \mathfrak{c}_X -valued divisors).

If the coweights $\check{\nu}_i$ are minuscule, then there exists a canonical isomorphism

$$\pi_!(IC_{\bar{Z}_X}) \simeq \bigoplus_{\mathfrak{P}} \left(\bigotimes_{\check{\Theta}^+} Sym^{m_{\check{\theta}}}(\mathbb{Q}_l) \right) \otimes \iota_!^{\mathfrak{P}}(IC_{C^{\mathfrak{P}}})$$

$$(4.1)$$

where $\mathfrak{P} \in \mathbb{N}^{\check{\Theta}^+}$, $\mathfrak{P} = (m_{\check{\theta}})_{\check{\theta}}$, $C^{\mathfrak{P}} = \prod_{\check{\Theta}^+} Sym^{m_{\check{\theta}}}C$, and $\iota^{\mathfrak{P}}$ is the map that sends the $\check{\Theta}^+$ -labelled divisor $(D_{\check{\theta}})_{\check{\theta}}$ to the corresponding \mathfrak{c}_X -valued divisor $\sum D_{\check{\theta}}\check{\theta}$.

(Partial results for the non-minuscule case.)

4.2 Function-theoretic interpretation

Consider the map $X(\mathfrak{o}) \xrightarrow{\pi_{\text{loc}}} X /\!\!/ N(\mathfrak{o})$. For every $c \in C$, an point $(\sigma, \mathscr{A}) \in Z_{X/\!/N} = \text{Maps}(C \to (X /\!\!/ N)/A)^{\circ}$ gives rise to an element $\text{val}(\sigma) \in (A(F) \cap X /\!\!/ N(\mathfrak{o}))/A(\mathfrak{o}) = \mathfrak{c}_X$.

The IC function Φ_0^X lives on $X(\mathfrak{o}) \cap X^{\mathrm{sm}}(F)$. We want to compute the integral over generic fibers of π_{loc} , as a function on the monoid $\mathfrak{c}_X = \bigoplus \mathbb{N}\check{\nu}_i$. We will do so by reading off the Frobenius trace of the sheaf $\pi_! IC_{Z_X}$ at points (σ, \mathscr{A}) with the desired valuation; if σ has non-trivial valuations $\check{\lambda}_j$ at various points c_j , this will give us the product $\prod_j \Phi_0^X(\check{\lambda}_j)$.

Write $q^{-\frac{\sum c_i}{2}}e^{\sum c_i\check{\nu}_i}$ for the characteristic function of $\sum c_i\check{\nu}_i \in \mathfrak{c}_X$. If the integral gave the constant 1 on $X \parallel N(\mathfrak{o})$, we would write it as

$$\prod_{i} \frac{1}{1 - q^{-\frac{1}{2}} e^{\check{\nu}_{i}}} = \prod_{i} (\sum_{n \ge 0} q^{-\frac{n}{2}} e^{n\check{\nu}_{i}})$$

(as in normalized Tate's thesis, up to a sign convention: e^{λ} corresponds to $\lambda(\varpi)^{-1} \cdot 1_{A(\mathfrak{o})}$).

But this is not what we have here: we have the additional weights $\check{\theta} \in \check{\Theta}^+$, which are obtained as *W*-translates of the $\check{\nu}_i$'s. Compare with the BFGM result for $Y = \overline{N \setminus G}$ (*G* simply connected): while Y / N is the toric embedding of *A* corresponding to *simple* positive coroots $\check{\Delta} \subset \check{\Phi}^+$, all positive coroots appear in the description of IC_Y :

$$\Phi_0^Y = \prod_{\check{\alpha} \in \check{\Phi}^+} \frac{1}{1 - q^{-1} e^{\check{\alpha}}} \cdot \mathbf{1}_{NK}$$

Correcting for this factor (because we used the Zastava model for $\overline{N \setminus G}$ instead of $N \setminus G$), Theorem 4.1.1 says:

Theorem 4.2.1. The IC function for $\mathcal{L}X$ is

$$\Phi_0^X = \frac{\prod_{\check{\alpha}\in\check{\Phi}^+} (1-q^{-1}e^{\check{\alpha}})}{\prod_{\check{\Theta}^+} (1-q^{-\frac{1}{2}}e^{\check{\theta}})}.$$
(4.2)

If we translate this to the Plancherel formula, as in $\S2.3$, we get:

$$|\Phi_0|^2 = \int_{\check{A}/W} \frac{|\Delta(\hat{\chi})|^2 d\hat{\chi}}{\prod_{\check{\Theta}} (1 - q^{-\frac{1}{2}} e^{\check{\theta}})}$$

Because of our assumption that the weights are minuscule, this reads

$$\int_{\check{A}/W} L(\pi_{\chi},\rho_X,\frac{1}{2})(|\Delta(\hat{\chi})|^2 d\hat{\chi}),$$

for a representation ρ_X of \check{G} with heighest weights translates of the colors $\check{\nu}_i$.

Example 4.2.2. For the family $X^{\bullet} = H_n \setminus G_n$ of §2.5, if we take $X = \overline{X^{\bullet}}^{aff}$, we get

$$|\Phi_0|^2 = \int_{\check{A}/W} L(\pi_1 \times \cdots \times \pi_n, \frac{1}{2}) (|\Delta(\hat{\chi})|^2 d\hat{\chi}).$$

Remark 4.2.3. The expression of $|\Phi_0|^2$ in terms of an *L*-function is anticipated by a conjecture of Ben Zvi–Venkatesh–S. on the derived endomorphism ring of $IC_{\mathcal{L}X}$.

4.3 Discussion of the main theorem

(Local discussion, although in reality we are working globally.)

4.3.1 What is non-trivial about the main theorem?

- 1. We do not know what $IC_{\mathcal{L}X}$ is.
- 2. Even if we did (e.g., when X is smooth, so *IC* is constant), the map $X/N \to X /\!\!/ N$ is only an isomorphism in codimension 1. Over the intersections of A-divisors in $X /\!\!/ N$, this map is highly non-trivial. (Eventually, this is where the "extra" coweights $\check{\theta}$ in the interior of the cone spanned by the colors $\check{\nu}_i$ come from.)

4.3.2 How do we address these issues?

Here is where the magic of perverse sheaves comes to save us.

Theorem 4.3.3. For the map $X \times \overline{N \setminus G} \to X /\!\!/ N$, the corresponding global map $\overline{Z}_X = Maps(C \to (X \times \overline{N \setminus G})/A \times G)^{\bullet} \xrightarrow{\pi} Z_X /\!\!/ N = Maps(C \to (X /\!\!/ N)/A)$ is proper and stratified semi-small.

["]As a corollary, $\pi_! IC_{\bar{Z}_X}$ is a direct sum of simple perverse sheaves.

This allows us to circumvent the question of an explicit description of $IC_{\bar{Z}_X}$. By perversity and dimension considerations, the direct summands of $\pi_! IC_{\bar{Z}_X}$ will actually turn out to be constant sheaves on strata of $Z_{X/\!\!/N} \simeq (\text{Sym}^{\bullet}C)^r$, which generically represent the fundamental class of the fiber. Thus, we know the answer once we

find the points on $Z_{X/\!\!/N}$ where the dimension or number of irreducible components of the fiber of \overline{Z}_X jumps.

The scheme \overline{Z}_X has a factorization property which allows us to reduce the question to "diagonals" $C \hookrightarrow \prod_{i=1}^r \operatorname{Sym}^{m_i} C$. Once we determine the "new" contributions $IC_{C^{\text{diag}}}$ on those diagonals, their symmetric powers (as in Theorem 4.1.1) will be provided "for free" by factorization.

Finally, the fact that these new contributions appear exactly for $\check{\theta} \in \check{\Theta}^+$ follows from a *functional equation*:

Theorem 4.3.4. For any simple reflection $w_{\alpha} \in W$, the "new" contributions of $\check{\theta}$ and $w_{\alpha}\check{\theta}$ are equal, unless one of them is equal to a color $\check{\nu}_i$.

This is proven using the fact that $X^{\circ}P_{\alpha}/\mathcal{R}(P_{\alpha}) \simeq \mathbb{G}_m \setminus \mathrm{PGL}_2$, by reduction to embeddings of $\mathbb{G}_m \setminus \mathrm{PGL}_2$.