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Abstract

I will report on ongoing joint work with Jonathan Wang, relating the intersection complex of the arc
space of a spherical variety to an unramified local L-function. This is a broad generalization of Iwasawa–
Tate theory (G “ Gm, X “ A1), where the local unramified L-factors are represented by the characteristic
function of the integers o of a non-Archimedean field. For more general groups G and possibly singular
spherical G-varieties X, the characteristic function of Xpoq is not the correct object to consider, and has
to be replaced by a function obtained as the Frobenius trace of the intersection complex of the arc space
of X. In special cases of horospherical, toric, affine homogeneous spherical varieties, or certain reductive
monoids, the relation of this function to L-functions was previously described in works of Braverman–
Finkelberg–Gaitsgory–Mirković, Bouthier–Ngô and myself. Our current work describes these IC functions
in a very general setting, relating the IC function of the arc space to an L-value determined by the geometry
of the spherical variety.

1 Introduction 2

2 Examples with smooth spaces 2
2.1 Iwasawa–Tate theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Horospherical spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 Hecke period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 Naive expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5 Basic family of examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Affine embeddings and IC functions 5
3.1 Affine embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 The IC function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 BFGM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4 Global models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.5 Example: models for toric varieties (Bouthier–Ngô–S.) . . . . . . . . . . . . . . . . . . . . . . 6
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1 Introduction

Let F “ Fqpp$qq Ą o “ Fqrr$ss,
X{Fq affine, then Xpoq “ LXpFqq,
LX “ the arc space of X, LXpRq “ lim

Ð
XpRr$s{$nq “ MapspD Ñ Xq, (D “ specFqrr$ss),

e.g., o “ lim
Ð

o{$n, and we view o{$n as the Fq-points of an n-dimensional vector space.

Goal of today’s lecture:
Let X ð G spherical, i.e., (normal &) B Ă G has an open dense orbit.
Will describe a relationship between the geometry of LX and (unramified) L-functions for G.
Local unramified L-function: determined by a graded representation of Ǧ “ ǦpCq, i.e., ǦˆGm

ρX
ÝÝÑ GLpVXq

and a Satake parameter 〈Frob〉 φ
ÝÑ Ǧ:

Lpφ, ρXq “
ź

i

detpI ´ q´
i
2 ρ
piq
X ˝ φpFrobqq.

The geometry will be reflected in the intersection complex ICLX . Through Frobenius trace (sheaf–
function dictionary), it gives rise to a “basic function” in some “Schwartz space” Φ0 P SpXpoqqGpoq.

2 Examples with smooth spaces

2.1 Iwasawa–Tate theory

X “ A1 ð Gm, smooth, hence

Φ0 “ 1o “
ÿ

ně0

1$noˆ “
ÿ

ně0

$´n ¨ 1oˆ ñ

ż

Φ0paqχpaqd
ˆa “

ÿ

ně0

χp$qn “
1

1´ χp$q
“ Lpχ, 0q.

2.2 Horospherical spaces

X “ A2 Ðâ X‚ “ NzSL2, smooth,
notice that Xpoq “ o2, while X‚poq “ o2 r p2,

Φ0 “ 1Xpoq “
ÿ

ně0

q´n$´n ¨ 1X‚poq “
1

1´ q´1$´1¨
1X‚poq,

where a¨ denotes the action of a P Fˆ by scaling, normalized so that it is unitary, i.e., a¨fpx, yq “ |a|fpax, ayq.
If we integrate against an unramified character of Fˆ, this becomes

ż

Φ0

ˆˆ

1 ˚

1

˙ˆ

a
a´1

˙˙

χ´1paq|a|´1dˆa “ Lpχ, 1q.

Better said, the torus A “ B{N acts on X, and $´1¨ is (normalized) translation by eα̌p$q, so

Φ0 “
1

1´ q´1eα̌p$q
¨ 1X‚poq.
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More generally, we’ll write functions on NzGpF q{K (K “ Gpoq) as series in the cocharacter lattice (using
exponential notation); a term 1

1´q´seλ̌
gives rise to Lpχ, λ̌, sq after (normalized) integration against the

unramified character χ´1 of A “ B{N .
(This calculation is familiar from a global comparison of Eisenstein series: we can define

Epz, sq “
ÿ

pm,nq“1

ys`
1
2

|mz ` n|2s`1
vs. E˚pz, sq “

ÿ

pm,nq‰p0,0q

ys`
1
2

|mz ` n|2s`1

Then E˚pz, sq “ ζp2s` 1qEpz, sq “ Lpδs ˝ eα̌, 1qEpz, sq.)

2.3 Hecke period

X “ GmzPGL2 “

ˆ

˚

˚

˙

zPGL2, Φ0 “ 1Xpoq.

Various related ways to extract L-values out of this function:

• WXpgq :“
ş

F Φ0

ˆˆ

1 x
1

˙

g

˙

ψ´1pxqdx P C8ppN,ψqzGqK , and interpret the output in terms of the

Casselman–Shalika formula; this is directly related to the calculation of global period integrals over
the torus in terms of Fourier coefficients of modular forms:

ż

kˆzAˆ

f

ˆ

a
1

˙

dˆa “

ż

Aˆ

Whittf

ˆ

a
1

˙

dˆa.

• PXpgq :“
ş

F Φ0

ˆˆ

1
1 1

˙ˆ

1 x
1

˙

g

˙

dx P C8pNzGqK ,

calculate: PX “ 1NK ` 2
ř

ně1
q´n1

N

¨

˝

$n

1

˛

‚K

“ p1` q´
1
2$¨q

¨

˚

˚

˝

ř

ně0
q´n1

N

¨

˝

$n

1

˛

‚K

˛

‹

‹

‚

“

“ p1` q´
1
2 e

´α̌
2 p$qq

ÿ

ně0

q´
n
2 e´n

α̌
2
p$q ¨ 1NK “

1` q´
1
2 e

´α̌
2 p$q

1´ q´
1
2 e

´α̌
2 p$q

¨ 1NK “
1´ q´1e´α̌p$q

p1´ q´
1
2 e

´α̌
2 p$qq2

¨ 1NK .

Explanation of this calculation: Y :“ X{N “ GmzPGL2 {N “ GmzSL2 {N “ pA2 r t0uq{Gm, Gm acts
as px, yq ¨ a “ pax, a´1yq. The quotient is a non-separated scheme, isomorphic to the affine line with
doubled origin. At the level of o-points, it is the union of o with o over the common open subset oˆ.
The integral is computing a pushforward X{N Ñ X �N “ A1 of 1Y poq; the value is 1 on oˆ, and 2 on
p (up to the measure factor q´n).

• Plancherel formula: The above integral PX “ RXpΦ0q, where RX is the “X-Radon-transform” = inte-
gral over generic horocycles (=N -orbits) on X. If we combine this with the Radon transform/standard
intertwining operator R0 for N´zG: R0pφqpgq “

ş

N φpngqdn,

C8c pXq
RX
ÝÝÑ C8pNzGq

R0
ÐÝÝ C8c pN

´zGq
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then B0 :“ R´1
0 ˝ RX : C8c pXq Ñ C8pN´zGq Bernstein asymptotics map, determines the Plancherel

decomposition for C8c pXq; for Φ0,

B0pΦ0q “
1´ e´α̌p$q

p1´ q´
1
2 e

´α̌
2 p$qq2

¨ 1N´K

(because R0p1N´Kq “
1´q´1e´α̌p$q

1´e´α̌p$q
1NK), and

|Φ0|
2 “

ż

Ǎ{W

|1´ e´α̌pχ̂q|2

p1´ q´
1
2 e

´α̌
2 pχ̂qq2p1´ q´

1
2 e

α̌
2 pχ̂qq2

dχ̂ “

ż

Ǎ{W
Lpπχ,Std,

1

2
q2p|∆pχ̂q|2dχ̂q,

πχ : the principal series representation induced from χ, χ̂ “ χp$q P Â its Satake parameter, |∆pχ̂q|2dχ̂:
the Haar measure on conjucacy classes in the compact form of Ǧ.

2.4 Naive expectation

Open B-orbit on X: X˝ » A1zB, assume A1 contained in a torus (possibly trivial).
LetAX “ A{A1, and integrate againstN -orbits onX˝, to obtain a function onNA1zG{K “ AXpF q{AXpoq:

C8c pXpF qq
K Q Φ ÞÑ RXpΦqpaq “

ż

N
Φpx0n ¨ aqdn,

where x0 P X
˝.

It can be expected that for “good” input Φ the output will be (up to some standard factors)

PX «
ź

i

1

1´ q´sieλ̌ip$q
¨ 1NA1K

with Mellin transform xPXpχqxPXpχ
´1q “ Lpπχ, ρXq for some graded representation ρX of ǦX (the “dual

group” of X, with maximal torus ǍX).

2.5 Basic family of examples

Let X‚ be the quotient of pSL2q
n by the subgroup Hn, where:

Hn “

"ˆ

1 x1

1

˙

ˆ

ˆ

1 x2

1

˙

ˆ ¨ ¨ ¨ ˆ

ˆ

1 xn
1

˙
ˇ

ˇ

ˇ

ˇ

x1 ` x2 ` ¨ ¨ ¨ ` xn “ 0

*

.

It has an action of G “ pGm ˆ pSL2q
nq{ ˘ 1.

• n “ 1, Hecke: The “naive expectation” holds in this case for Φ0 “ 1X‚poq, as (essentially) we saw above, with
ρX “ Std‘ Std_ ð Ǧ “ GL2.

It corresponds to the global Hecke period
ş

rGms f

ˆ

a
1

˙

|a|sda, represents Lpπ,Std, 1
2 ` sq.

• n “ 2, Rankin–Selberg: The “naive expectation” holds in this case for Φ0 “ 1X‚poq or 1Xpoq, where X‚ ãÑ X “

A2 ˆGL2 G, with ρX “ Stdb Std‘ Std_ b Std_.
It corresponds to the global Rankin–Selberg period

ş

rGL2s
f1pgqf2pgqE

˚pg, 1
2 ` sqdg, represents Lpπ1ˆπ2,

1
2 ` sq.

• n “ 3, the “naive expectation” doesn’t work for 1X‚poq: although one would expect to get Lpπ1ˆ π2ˆ π3,
1
2 ` sq,

there is a numerator which doesn’t correspond to an L-function. However, X‚ ãÑ X: “ rS, SszSp6 (one of the
“low rank accidental isomorphisms” for spherical varieties, and the expectation holds for 1X:poqq which however
is not compactly supported on XpF q.
It corresponds to the global integral of Garrett:

ş

rGs
fpgqESiegelpg,

1
2 ` sqdg, represents Lpπ1 ˆ π2 ˆ π3,

1
2 ` sq.

• n ě 4?
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3 Affine embeddings and IC functions

Our naive expectation is missing some ingredients:

1. X should be affine (the case of UP zG, rP, P szG is also OK, because it differs from its affine completion by an
L-function, but this is the only such case);

2. If X is singular, 1Xpoq should be replaced by Φ0 “ the IC function.

3.1 Affine embeddings

As we saw, the choice of embedding matters, e.g., Gm ãÑ A1 in Tate’s thesis, the embedding is responsible for an extra
factor of Lpχ, 1

2 q. (Shifted by 1
2 here, by considering L2-normalized action.)

Direct generalizations:

• X‚ “ GLn ð GL2
n, X

‚ ãÑ X “ Matn, Godement–Jacquet, the embedding is responsible for an extra factor of
Lpπ, 1

2 q.

• (Split) affine toric variety T ãÑ T̄ , determined by a saturated, finitely generated, strictly convex submonoid
c Ă Λ̌ “ HompGm, T q.
If c “ Nr, T̄ is a product of Gm’s and Ga’s (the latter indexed by the basis elements λ̌1, . . . , λ̌r of c).
Then 1T̄ poq corresponds to

ś

i Lpχ, λ̌i,
1
2 q.

But if c is not free ô T̄ is singular, 1T̄ poq its Mellin transform is not an L-function.

• Back to GLn and more general reductive groups H, there exist various H ˆ H-equivariant affine embeddings
(“reductive monoids”) H ãÑ H̄, e.g., the L-monoids (Ngô) determined by a heighest weight λ̌ for the dual
group. Almost all singular.

3.2 The IC function

Now we start thinking of Xpoq as LXpFqq “ MapspD Ñ Xq, D “ specFqrr$ss. This is an infinite-dimensional ind-
scheme, and thus does not have a good theory of perverse sheaves. (May be OK soon, based on recent work of Bouthier–
Kazhdan.) However, Grinberg–Kazhdan and Drinfeld proved that in a formal neighborhood of a non-degenerate arc
γ : D Ñ X (i.e., D˚ lies in the smooth locus Xsm), the singularities are of finite type:

LXγ » Yγ1 ˆD
8,

where γ1 P Y : a scheme of finite type. This allows one to define the IC function as

Φ0pγq “ trpFrob´1, ICYγ1 r´dimY sq,

where ICY is the intersection complex of Y (a perverse sheaf obtained as the intermediate extension of the constant
sheaf on the smooth locus). One can show [Bouthier–Ngô–S.] that Φ0 P C

8pXsmpF q X Xpoqq is independent of the
model Y chosen.

3.3 BFGM

Example: X “ NzG
aff
“ specFqrNzGs, G simply connected, then Braverman–Finkelberg–Gaitsgory–Mirković have

computed:

Φ0 “
ź

α̌ą0

1

1´ q´1eα̌
¨ 1NK “ Lpň, 1q,

i.e., supported on the negative coroot lattice, and equal to a deformation of Kostant’s partition function:

Φ0pλ̌p$qq “ q´〈λ̌,ρ〉
ÿ

P

q´|P |, where P runs over all partitions of λ̌ into a sum of negative roots.
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3.4 Global models

To produce the finite-dimensional models of the Grinberg–Kazhdan–Drinfeld theorem, we can replace LX “ MapspD Ñ
Xq with MX “ MapspC Ñ X{Gq, the stack classifying G-bundles G on a smooth projective curve C, together with a
G-equivariant morphism σ : G Ñ X. Fixing a point c P C, we have a formally smooth cover M̂X Ñ MX , where M̂X

denotes the above data together with a trivialization of G on the formal neighborhood Dc, and M̂X maps to LX. If,
for γ1 “ pG , σq PMX with σ|Crtcu in Xsm, then the map M̂X Ñ LX is formally smooth at every preimage of γ1.

Upshot: To compute the IC function for LX, it suffices to compute the stalk of ICMX
at such a point γ1.

3.5 Example: models for toric varieties (Bouthier–Ngô–S.)

First, consider X “ A1 ð G “ Gm. The global model M‚
X (where ‚:= generically in the open G-orbit) classifies line

bundles on C together with a section, hence is the scheme Sym‚C of effective divisors on X.
For a torus T and a smooth toric variety X described by a monoid cX » Nr Ă HompGm, T q, we similarly have

M‚
X “ pSym‚Cqr, the scheme of cX -valued divisors.

If X is not smooth ô cX is not free, the scheme of cX -valued divisors turns out to be singular. For every λ̌ P cX
(representing an orbit in pXpoq X X‚pF qq{Gpoq), there are several irreducible components intersecting at the point
γ1 PMX as above. They are indexed by partitions P of λ into the indecomposable elements λ̌i of cX , and for each such
partition, the normalization of the component is equal to Sym|P |C.

It follows that the IC function is Φ0pλ̌p$qq “
ř

P q
´
|P |
2 , i.e.,

Φ0 “
ź

λ̌i: indecomposable

1

1´ q´
1
2 e
´λ̌i

¨ 1T poq.

3.6 Zastava models

(Zastava = flag in Croatian.)
Assume (for simplicitly of exposition) that B acts freely on the open orbit X˝.
The Zastava model is defined as ZX “ MapspC Ñ X{Bq˝ and is a scheme under the above hypotheses. Moreover,

if we consider the toric variety X �N for A “ B{N , we have a natural map ZX ÑM‚
X�N “ ZX�N (covered in §3.5).

Example 3.6.1. For X “ GmzPGL2, we have seen that X{N “ the affine line with doubled origin, so X � N “ the
affine line, ZX�N “ Sym‚C (classifying line bundles + a non-zero section), and ZX is its finite cover that labels each
zero by one of the two points over the origin, i.e., ZX “ Sym‚C˚̂Sym‚C (where ˚̂ means: the divisors are disjoint).

The problem at hand, precisely formulated:
Compute the pushforward of the IC sheaf under ZX Ñ ZX�N .
This corresponds to the pushforward/X-Radon transform under Xpoq Ñ X �Npoq.

Remark 3.6.2. In other words, we are not asking for an explicit description of the IC function as a function on X‚pF qX
Xpoq, but for its image under the Radon transform, related to its spectral/Plancherel decomposition, that will allow us
to relate it to L-functions.

4 The result and proof

From now on, we will assume that ǦX “ Ǧ. This means two things:

• B acts freely on the open orbit X˝;

• for every simple root α, the PGL2-variety X˝Pα{RpPαq is isomorphic to GmzPGL2.

Such is, e.g., the family of examples of §2.5.
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4.1 Statement

For the homogeneous part X‚ “ HzG, the quotient X‚ �N is a toric variety for A “ B{N , corresponding to a monoid
cX of coweights; we will assume (as we may, by passing to an abelian cover) that cX is free, rank r. Its basis elements
ν̌i, i “ 1, . . . , r, correspond to the colors, i.e., B-stable divisors in X‚, with ν̌i being the valuation induced by the
corresponding color on FqpXqpBq. (Some non-degeneracy assumption here, again by passing to an abelian cover, to
avoid “double points” like GmzPGL2 — replace by GmzGL2. Also assuming: p " 1.)

Our results distinguish between the case of the minimal affine embedding X‚
aff
“ specFqrX‚s and other affine

embeddings. I will only present the case of X “ X‚
aff

.
We have a map X{N Ñ X �N . Our assumptions imply that it is an isomorphism in codimension one.
The result is best formulated for the compactified Zastava model: instead of

ZX “ MapspC Ñ X{Bq˝ “ MapspC Ñ pX{Nq{Aq˝ “ MapspC Ñ pX ˆNzGq{AˆGq‚,

consider
Z̄X “ MapspC Ñ pX ˆNzGq{AˆGq‚,

where NzG is the affine closure of NzG.
Let Θ̌ be the set of all W -translates of the coweights ν̌i; write Θ̌` for those that belong to the cone spanned by the

ν̌i’s.

Theorem 4.1.1 (S.–Wang). Consider the compactified Zastava model Z̄X , and its map π to the corresponding space for
X �N :

ZX�N “ MapspC Ñ pX �Nq{Aq˝ “ pSym‚Cqr (the space of cX -valued divisors).

If the coweights ν̌i are minuscule, then there exists a canonical isomorphism

π!pICZ̄X q »
à

P

˜

â

Θ̌`

Symmθ̌ pQlq

¸

b ιP! pICCPq (4.1)

where P P NΘ̌` , P “ pmθ̌qθ̌, C
P “

ś

Θ̌` Symmθ̌C, and ιP is the map that sends the Θ̌`-labelled divisor pDθ̌qθ̌ to the
corresponding cX -valued divisor

ř

Dθ̌ θ̌.
(Partial results for the non-minuscule case.)

4.2 Function-theoretic interpretation

Consider the map Xpoq πloc
ÝÝÑ X �Npoq. For every c P C, an point pσ,A q P ZX�N “ MapspC Ñ pX �Nq{Aq˝ gives rise

to an element valpσq P pApF q XX �Npoqq{Apoq “ cX .
The IC function ΦX0 lives on Xpoq X XsmpF q. We want to compute the integral over generic fibers of πloc, as a

function on the monoid cX “
À

Nν̌i. We will do so by reading off the Frobenius trace of the sheaf π!ICZX at points
pσ,A q with the desired valuation; if σ has non-trivial valuations λ̌j at various points cj , this will give us the product
ś

j ΦX0 pλ̌jq.

Write q´
ř

ci
2 e

ř

ciν̌i for the characteristic function of
ř

ciν̌i P cX . If the integral gave the constant 1 on X � Npoq,
we would write it as

ź

i

1

1´ q´
1
2 eν̌i

“
ź

i

p
ÿ

ně0

q´
n
2 enν̌iq

(as in normalized Tate’s thesis, up to a sign convention: eλ̌ corresponds to λ̌p$q´1 ¨ 1Apoq).
But this is not what we have here: we have the additional weights θ̌ P Θ̌`, which are obtained as W -translates of

the ν̌i’s. Compare with the BFGM result for Y “ NzG (G simply connected): while Y �N is the toric embedding of A
corresponding to simple positive coroots ∆̌ Ă Φ̌`, all positive coroots appear in the description of ICY :

ΦY0 “
ź

α̌PΦ̌`

1

1´ q´1eα̌
¨ 1NK

Correcting for this factor (because we used the Zastava model for NzG instead of NzG), Theorem 4.1.1 says:
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Theorem 4.2.1. The IC function for LX is

ΦX0 “

ś

α̌PΦ̌`p1´ q
´1eα̌q

ś

Θ̌`p1´ q
´ 1

2 eθ̌q
. (4.2)

If we translate this to the Plancherel formula, as in §2.3, we get:

|Φ0|
2 “

ż

Ǎ{W

|∆pχ̂q|2dχ̂
ś

Θ̌p1´ q
´ 1

2 eθ̌q
.

Because of our assumption that the weights are minuscule, this reads
ż

Ǎ{W

Lpπχ, ρX ,
1

2
qp|∆pχ̂q|2dχ̂q,

for a representation ρX of Ǧ with heighest weights translates of the colors ν̌i.

Example 4.2.2. For the family X‚ “ HnzGn of §2.5, if we take X “ X‚
aff

, we get

|Φ0|
2 “

ż

Ǎ{W

Lpπ1 ˆ ¨ ¨ ¨ ˆ πn,
1

2
qp|∆pχ̂q|2dχ̂q.

Remark 4.2.3. The expression of |Φ0|
2 in terms of an L-function is anticipated by a conjecture of Ben Zvi–Venkatesh–S.

on the derived endomorphism ring of ICLX .

4.3 Discussion of the main theorem

(Local discussion, although in reality we are working globally.)

4.3.1 What is non-trivial about the main theorem?

1. We do not know what ICLX is.

2. Even if we did (e.g., when X is smooth, so IC is constant), the map X{N Ñ X �N is only an isomorphism in
codimension 1. Over the intersections of A-divisors in X �N , this map is highly non-trivial. (Eventually, this is
where the “extra” coweights θ̌ in the interior of the cone spanned by the colors ν̌i come from.)

4.3.2 How do we address these issues?

Here is where the magic of perverse sheaves comes to save us.

Theorem 4.3.3. For the mapXˆNzGÑ X�N , the corresponding global map Z̄X “ MapspC Ñ pXˆNzGq{AˆGq‚
π
ÝÑ

ZX�N “ MapspC Ñ pX �Nq{Aq is proper and stratified semi-small.
As a corollary, π!ICZ̄X is a direct sum of simple perverse sheaves.

This allows us to circumvent the question of an explicit description of ICZ̄X . By perversity and dimension consid-
erations, the direct summands of π!ICZ̄X will actually turn out to be constant sheaves on strata of ZX�N » pSym‚Cqr,
which generically represent the fundamental class of the fiber. Thus, we know the answer once we

find the points on ZX�N where the dimension or number of irreducible components of the fiber of Z̄X
jumps.

The scheme Z̄X has a factorization property which allows us to reduce the question to “diagonals”C ãÑ
śr
i“1 SymmiC.

Once we determine the “new” contributions ICCdiag on those diagonals, their symmetric powers (as in Theorem 4.1.1)
will be provided “for free” by factorization.

Finally, the fact that these new contributions appear exactly for θ̌ P Θ̌` follows from a functional equation:

Theorem 4.3.4. For any simple reflection wα PW , the “new” contributions of θ̌ and wαθ̌ are equal, unless one of them is
equal to a color ν̌i.

This is proven using the fact that X˝Pα{RpPαq » GmzPGL2, by reduction to embeddings of GmzPGL2.

8


	Introduction
	Examples with smooth spaces
	Iwasawa–Tate theory
	Horospherical spaces
	Hecke period
	Naive expectation
	Basic family of examples

	Affine embeddings and IC functions
	Affine embeddings
	The IC function
	BFGM
	Global models
	Example: models for toric varieties (Bouthier–Ngô–S.)
	Zastava models

	The result and proof
	Statement
	Function-theoretic interpretation
	Discussion of the main theorem
	What is non-trivial about the main theorem?
	How do we address these issues?



