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Class Field Theory

I F local field of characteristic zero;

I WF Weil group;

I The local class field theory says that there is a canonical
continuous group homomorphism

aF : WF → F×

inducing topological isomorphism W ab
F ' F× = GL1(F ).
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Local Langlands Reciprocity

I Vast generalization to general connected reductive algebraic
groups G ; e.g. GLn;

I L-groups of G , LG ; e.g. LGLn = GLn(C)×WF ;

I Weil-Deligne group WF =

{
WF , F Archimedean

WF × SL2(C), F p-adic

I Local Langlands parameters: ΦG (F ) consists of equivalence
classes of admissible homomorphisms ϕ :WF → LG ;

I Irreducible admissible representations: Irr(G (F ))
(Casselman-Wallach if F is Archimedean);
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I Local Langlands Reciprocity for GL: There is a unique
bijection between ΦGLn(F ) and Irr(GLn(F )), compatible with
local class field theory, L-functions, ε-factors;

I The Local Langlands Reciprocity for GL is now a Theorem.
When F is p-adic, it is proved by Harris-Taylor, Henniart and
Scholze; When F is Archimedean, it follows from the work of
Langlands on the classification of irreducible admissible
representations (for general reductive Lie groups);

I In general, the set ΦG (F ) gives a partition of Irr(G (F )). For
any ϕ ∈ ΦG (F ), there is a finite subset (L-packet)
Πϕ ⊂ Irr(G (F )). For GL the L-packets are singleton.
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Local Langlands Functoriality

Given ρ : LH → LG , based on the Local Langlands Reciprocity,
there is the
Local Langlands Functoriality for ρ:
For any L-packet Πϕ of H(F ) associated to ϕ ∈ ΦH(F ), there is an
L-packet Πρ◦ϕ of G (F ) that lifts Πϕ along ρ.



Distribution characters

I For any π ∈ Irr(G (F )), one can associate to it a distribution
character trπ;

I By Harish-Chandra, the distribution character trπ is given by
a locally integrable function trπ(g) on G (F ), which is smooth
(analytic when F is Archimedean) on G rss(F );

I For non-isomorphic irreducible admissible representations,
their distribution characters are linearly independent.
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A natural question

R. Langlands proposed the following question (Singularités et
transfert, 2013):
Given ρ : LH → LG , does there exist a (stable) distribution Θρ on
H(F )× G (F ) (more precisely their Steinberg-Hitchin bases), such
that for any tempered L-packet Πϕ, the following identity holds

trΠρ◦ϕ(g) =

∫
H(F )

Θρ(h, g)trΠϕ(h)

as locally integrable distributions?

I Πϕ is tempered if ϕ :WF → LH has bounded image;

I It is expected that in general irreducible representations in Πϕ

are tempered representations;

I trΠϕ =
∑

π∈Πϕ
trπ, and in general it is expected that trΠϕ is a

stable distribution on H(F ).
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Known results

I When F is p-adic, H is an elliptic torus in G = SL2, and
ρ : LH → LG is the standard embedding, the pioneer work of
I. Gelfand, M. Graev and I. Pyatetski-Shapiro showed

Θρ(g , h) = 2
sgnE (tr(g)− tr(h))

|tr(g)− tr(h)|

where E is the quadratic extension associated to H and sgnE
is the quadratic character of F× obtained via CFT.

I When the residue characteristic of F is not equal to 2,
Langlands analyzed the question when H is a maximal torus
in G = SL2, and ρ : LH → LG is the standard embedding.

I The result of G-G-PS was generalized by D. Johnstone in his
PhD thesis for H an unramified elliptic torus in G = SL`,
under mild assumptions on the residue characteristic of F and
character formulas for the associated supercuspidal
representations of SL`(F ), where ` is a prime.
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Non-abelian situation

What about the case when both H and G are non-abelian?

Focus
H = GL2, G = GLn+1, ρ = Symn;

I Local Langlands Reciprocity for GL is known;

I L-packets are singleton, stability for GL is equivalent to
conjugation invariance;

I The classification of tempered representations for GL is
known. p-adic by H. Jacquet, Archimedean by A. Knapp and
G. Zuckerman.



Preparations

Notation

I Tn ⊂ Bn ⊂ GLn;

I Mn ⊂ Pn ⊂ GLn corresponds to partition (2, 2, ..., 2) if n is
even, and (2, 2, ..., 2, 1) is n is odd;

I DGLn(x) = | det(1−Ad(x))|gln/(gln)x | the Weyl discriminant;



When F = C

I Tempered representations of GL2(C) are all tempered
principal series, i.e. π ' IndGL2

B2
(χ1, χ2) where χ1, χ2 are

unitary characters of C×;

I The lifting ρ(π) of π along ρ is given by

Ind
GLn+1

Bn+1
(χn

1, χ
n−1
1 χ2, ..., χ

n
2).
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When F = C

By the explicit character formulas for principal series, it is not hard
to derive the following result.

Proposition (Johnstone-L.)

Define Θρ as the parabolic induction of Θρ,T from
Tn+1(C)× T2(C) to GLn+1(C)×GL2(C), where Θρ,T is
supported on T rss

n+1(C)× T rss
2 (C) given by

Θρ,T (D, t) = δ∏n+1
k=1 D

n+1−k
k

(t1)⊗ δ∏n+1
k=1 D

k−1
k

(t2)

with (D, t) = (D1, ...,Dn+1, t1, t2). Then

D
1
2
GLn+1

(g)trρ(π)(g) =

∫
GL2(F )

Θρ(g , γ)D
1
2
GL2

(γ)trπ(γ)

for any tempered representation π of GL2(C).



When F = R

Tempered representations

I Tempered principal series IndGL2
B2

(χ1, χ2) where χ1, χ2 are
unitary characters of R×;

I Discrete series Dl ,t parametrized by (l , t) ∈ N× iR.

Issue
The distribution constructed before does NOT work for discrete
series.

Question
How to unify the tempered principal series and discrete series?



When F = R

Observation
Let ωπ be the central character of π. The lifting ρ(π) for any

tempered representation π is always of the form Ind
GLn+1

Pn+1
(πMn+1)

where

πMn+1 =

{⊗ n
2
k=1 π2k

⊗
(ωπ)

n
2 , if n is even,⊗ n+1

2
k=1 π2k−1, if n is odd.

if π = IndGL2
B2

(χ1, χ2). Here πm = (ωπ)
n−m

2 ⊗ IndGL2
B2

(χm
1 , χ

m
2 );

πMn+1 =

{⊗ n
2
k=1 π2k

⊗
(ωπ)

n
2 , if n is even,⊗ n+1

2
k=1 π2k−1, if n is odd.

if π = Dl ,t . Here πm = (ωπ)
n−m

2 ⊗ Dmk,mt .



When F = R

Reduce to Mn+1

By the character formula for induced representations, we only need
to determine a distribution ΘMn+1 on Mn+1(F )×GL2(F ) which
yields the lifting of distribution characters from π to πMn+1 .



When F = R: Character relation
Moreover, we have the following theorem relating character
distributions between π and πm.

Theorem (Johnstone-L.)

I Fix a tempered principal series IndGL2
B2

(χ1, χ2) of GL2(F ).
Then the following equality of locally integrable distributions
holds

D
1
2
GL2

(γk)trInd(χ1,χ2)(γk) = D
1
2
GL2

(γ)trInd(χk
1 ,χ

k
2 )(γ)

for any k ∈ N.

I When F = R, let Dl ,t be the discrete series representation of
GL2(R) associated to (l , t) ∈ N× C. Then the following
equality of locally integrable distributions holds

D
1
2
GL2

(γk)trDl,t
(γk) = D

1
2
GL2

(γ)trDkl,kt
(γ)

for any k ∈ N odd.



When F = R: Reduction formula

Assumption

When n is odd, assume that the distribution Θ
∆ n+1

2 exists where
∆ n+1

2
is the diagonal embedding from GL2(C)×WF to

LMn+1 ' (
∏ n+1

2
i=1 GL2(C))×WF ,

Definition
Define the distribution ΘMn+1 on

Mn+1(R)×GL2(R) ' (
∏ n+1

2
i=1 GL2(R))×GL2(R) as follows,

ΘMn+1(g1,..., g n+1
2
, γ)

= Θ
∆ n+1

2 ( det(g1)
n−1

2 · g1,

det(g2)
n−3

2 · g3
2 , ...,

det(g n+1
2

) · gn−2
n−1

2

,

gn
n+1

2
,

γ).



When F = R: Reduction formula

Corollary (Johnstone-L.)

The following distributional identity holds,

D
1
2
Mn+1

(m)trπMn+1
(m) =

∫
GL2(F )

ΘMn+1(m, γ)D
1
2
GL2

(γ)trπ(γ)

for any tempered representation π of GL2(F ) when F is
Archimedean.

Remark

I Define Θρ as the parabolic induction of ΘMn+1 from
Mn+1(F )×GL2(F ) to GLn+1(F )×GL2(F ).

I The functoriality for ∆ n+1
2

is given by π →
⊗ n+1

2
i=1 π, which is

much easier than ρ. However, the existence of Θ
∆ n+1

2 seems
to be not easy from analytical point of view.
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When F is p-adic

We focus on the case when the residue characteristic of F is NOT
equal to 2.

Tempered representations

I Tempered principal series;

I Twisted Steinberg representations with unitary central
character;

I Supercuspidal representations with unitary central character;

Focus
Supercuspidal representations.



When F is p-adic: Supercuspidal representations

I By R. Howe, the supercuspidal representations of GL2(F ) can
be parametrized by admissible pairs (E/F , θ) with E/F a
tamely ramified quadratic extension, and θ an admissible
character of E×. For each admissible pair (E/F , θ), we
denote the corresponding supercuspidal representation by πθ;

I The functorial lifting ρ(π) of π = πθ is also of the form

Ind
GLn+1

Pn+1
πMn+1 , where

πMn+1 =

{⊗ n
2
k=1 π2k

⊗
(θ|F×)

n
2 , if n is even,⊗ n+1

2
k=1 π2k−1, if n is odd.

Here πm = (θ|F×)
n−m

2 ⊗ πθm where πθm is the tempered
representation of GL2(F ) with tempered L-parameter
IndWF

WE
θm. Note: θ|F× is the central character of πθ.
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When F is p-adic: Character relation

Similar to the Archimedean case, we have the following relation
between character distributions of πθk and πθ.

I Let πθ be the supercuspidal representation of GL2(F )
associated to an admissible pair (E/F , θ). Then the following
equality holds as locally integrable distributions, whenever
k ∈ N is coprime to (q − 1)q(q + 1), where q is the
cardinality of the residue field of F

D
1
2
GL2

(γk)trπθ(γk) = D
1
2
GL2

(γ)trπ
θk

(γ).

Remark
Under mild assumptions on k and q, except twisted Steinberg
representations, the distribution characters of tempered
representations behave like characters (for abelian groups).



Thank you!


