On the Stable Transfer for Sym^n Lifting of GL_2 : Archimedean Case

Zhilin Luo

University of Minnesota

CARTOON, May 29, 2020

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Class Field Theory

► F local field of characteristic zero;

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Class Field Theory

► F local field of characteristic zero;

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

► W_F Weil group;

Class Field Theory

- F local field of characteristic zero;
- ► W_F Weil group;
- The local class field theory says that there is a canonical continuous group homomorphism

$$a_F: W_F o F^{ imes}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

inducing topological isomorphism $W_F^{ab} \simeq F^{\times} = \operatorname{GL}_1(F)$.

 Vast generalization to general connected reductive algebraic groups G; e.g. GL_n;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

 Vast generalization to general connected reductive algebraic groups G; e.g. GL_n;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▶ *L*-groups of *G*, ^{*L*}*G*; e.g. ^{*L*}GL_{*n*} = GL_{*n*}(\mathbb{C}) × *W*_{*F*};

 Vast generalization to general connected reductive algebraic groups G; e.g. GL_n;

▶ *L*-groups of *G*, ^{*L*}*G*; e.g. ^{*L*}GL_{*n*} = GL_{*n*}(\mathbb{C}) × *W*_{*F*};

► Weil-Deligne group
$$W_F = \begin{cases} W_F, & F \text{ Archimedean} \\ W_F \times SL_2(\mathbb{C}), & F p \text{-adic} \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 Vast generalization to general connected reductive algebraic groups G; e.g. GL_n;

- ▶ *L*-groups of *G*, ^{*L*}*G*; e.g. ^{*L*}GL_{*n*} = GL_{*n*}(\mathbb{C}) × *W*_{*F*};
- ► Weil-Deligne group $W_F = \begin{cases} W_F, & F \text{ Archimedean} \\ W_F \times SL_2(\mathbb{C}), & F p \text{-adic} \end{cases}$
- Local Langlands parameters: Φ_G(F) consists of equivalence classes of admissible homomorphisms φ : W_F → ^LG;

(日)(1)

 Vast generalization to general connected reductive algebraic groups G; e.g. GL_n;

- ▶ *L*-groups of *G*, ^{*L*}*G*; e.g. ^{*L*}GL_{*n*} = GL_{*n*}(\mathbb{C}) × *W*_{*F*};
- ► Weil-Deligne group $W_F = \begin{cases} W_F, & F \text{ Archimedean} \\ W_F \times SL_2(\mathbb{C}), & F p \text{-adic} \end{cases}$
- Local Langlands parameters: Φ_G(F) consists of equivalence classes of admissible homomorphisms φ : W_F → ^LG;

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 Irreducible admissible representations: Irr(G(F)) (Casselman-Wallach if F is Archimedean);

 Local Langlands Reciprocity for GL: There is a unique bijection between Φ_{GLn}(F) and Irr(GL_n(F)), compatible with local class field theory, L-functions, ε-factors;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Local Langlands Reciprocity for GL: There is a unique bijection between Φ_{GLn}(F) and Irr(GL_n(F)), compatible with local class field theory, L-functions, ε-factors;
- The Local Langlands Reciprocity for GL is now a Theorem. When F is p-adic, it is proved by Harris-Taylor, Henniart and Scholze; When F is Archimedean, it follows from the work of Langlands on the classification of irreducible admissible representations (for general reductive Lie groups);

- Local Langlands Reciprocity for GL: There is a unique bijection between Φ_{GLn}(F) and Irr(GL_n(F)), compatible with local class field theory, L-functions, ε-factors;
- The Local Langlands Reciprocity for GL is now a Theorem. When F is p-adic, it is proved by Harris-Taylor, Henniart and Scholze; When F is Archimedean, it follows from the work of Langlands on the classification of irreducible admissible representations (for general reductive Lie groups);
- In general, the set Φ_G(F) gives a partition of Irr(G(F)). For any φ ∈ Φ_G(F), there is a finite subset (L-packet) Π_φ ⊂ Irr(G(F)). For GL the L-packets are singleton.

Local Langlands Functoriality

Given $\rho: {}^{L}H \to {}^{L}G$, based on the Local Langlands Reciprocity, there is the

Local Langlands Functoriality for ρ :

For any *L*-packet Π_{φ} of H(F) associated to $\varphi \in \Phi_H(F)$, there is an *L*-packet $\Pi_{\rho \circ \varphi}$ of G(F) that lifts Π_{φ} along ρ .

Distribution characters

For any π ∈ Irr(G(F)), one can associate to it a distribution character tr_π;

Distribution characters

- For any π ∈ Irr(G(F)), one can associate to it a distribution character tr_π;
- By Harish-Chandra, the distribution character tr_π is given by a locally integrable function tr_π(g) on G(F), which is smooth (analytic when F is Archimedean) on G^{rss}(F);

Distribution characters

- For any π ∈ Irr(G(F)), one can associate to it a distribution character tr_π;
- By Harish-Chandra, the distribution character tr_π is given by a locally integrable function tr_π(g) on G(F), which is smooth (analytic when F is Archimedean) on G^{rss}(F);

For non-isomorphic irreducible admissible representations, their distribution characters are linearly independent.

A natural question

R. Langlands proposed the following question (*Singularités et transfert*, 2013): Given $\rho: {}^{L}H \rightarrow {}^{L}G$, does there exist a (**stable**) distribution Θ^{ρ} on $H(F) \times G(F)$ (more precisely their Steinberg-Hitchin bases), such that for any **tempered** *L*-packet Π_{φ} , the following identity holds

$$\mathrm{tr}_{\Pi_{
ho \circ arphi}}(g) = \int_{H(F)} \Theta^{
ho}(h,g) \mathrm{tr}_{\Pi_{arphi}}(h)$$

as locally integrable distributions?

• Π_{φ} is tempered if $\varphi : \mathcal{W}_F \to {}^L H$ has bounded image;

A natural question

R. Langlands proposed the following question (*Singularités et transfert*, 2013): Given $\rho: {}^{L}H \rightarrow {}^{L}G$, does there exist a (**stable**) distribution Θ^{ρ} on $H(F) \times G(F)$ (more precisely their Steinberg-Hitchin bases), such that for any **tempered** *L*-packet Π_{φ} , the following identity holds

$$\mathrm{tr}_{\Pi_{
ho
hoarphi}}(g) = \int_{H(F)} \Theta^{
ho}(h,g) \mathrm{tr}_{\Pi_{arphi}}(h)$$

as locally integrable distributions?

- Π_{φ} is tempered if $\varphi : \mathcal{W}_F \to {}^L H$ has bounded image;
- It is expected that in general irreducible representations in Π_φ are tempered representations;

A natural question

R. Langlands proposed the following question (*Singularités et transfert*, 2013): Given $\rho: {}^{L}H \rightarrow {}^{L}G$, does there exist a (**stable**) distribution Θ^{ρ} on $H(F) \times G(F)$ (more precisely their Steinberg-Hitchin bases), such that for any **tempered** *L*-packet Π_{φ} , the following identity holds

$$\mathrm{tr}_{\Pi_{
ho \circ arphi}}(g) = \int_{H(F)} \Theta^{
ho}(h,g) \mathrm{tr}_{\Pi_{arphi}}(h)$$

as locally integrable distributions?

- Π_{φ} is tempered if $\varphi : \mathcal{W}_F \to {}^L H$ has bounded image;
- It is expected that in general irreducible representations in Π_φ are tempered representations;

• $\operatorname{tr}_{\Pi_{\varphi}} = \sum_{\pi \in \Pi_{\varphi}} \operatorname{tr}_{\pi}$, and in general it is expected that $\operatorname{tr}_{\Pi_{\varphi}}$ is a stable distribution on H(F).

Known results

When F is p-adic, H is an elliptic torus in G = SL₂, and ρ: ^LH → ^LG is the standard embedding, the pioneer work of I. Gelfand, M. Graev and I. Pyatetski-Shapiro showed

$$\Theta^{\rho}(g,h) = 2 rac{\operatorname{sgn}_{\mathcal{E}}(\operatorname{tr}(g) - \operatorname{tr}(h))}{|\operatorname{tr}(g) - \operatorname{tr}(h)|}$$

where *E* is the quadratic extension associated to *H* and sgn_E is the quadratic character of F^{\times} obtained via CFT.

Known results

When F is p-adic, H is an elliptic torus in G = SL₂, and ρ: ^LH → ^LG is the standard embedding, the pioneer work of I. Gelfand, M. Graev and I. Pyatetski-Shapiro showed

$$\Theta^{
ho}(g,h) = 2 rac{\mathrm{sgn}_{\mathcal{E}}(\mathrm{tr}(g) - \mathrm{tr}(h))}{|\mathrm{tr}(g) - \mathrm{tr}(h)|}$$

where *E* is the quadratic extension associated to *H* and sgn_E is the quadratic character of F^{\times} obtained via CFT.

When the residue characteristic of F is not equal to 2, Langlands analyzed the question when H is a maximal torus in G = SL₂, and ρ : ^LH → ^LG is the standard embedding.

Known results

When F is p-adic, H is an elliptic torus in G = SL₂, and ρ: ^LH → ^LG is the standard embedding, the pioneer work of I. Gelfand, M. Graev and I. Pyatetski-Shapiro showed

$$\Theta^{
ho}(g,h) = 2 rac{\mathrm{sgn}_{\mathcal{E}}(\mathrm{tr}(g) - \mathrm{tr}(h))}{|\mathrm{tr}(g) - \mathrm{tr}(h)|}$$

where *E* is the quadratic extension associated to *H* and sgn_E is the quadratic character of F^{\times} obtained via CFT.

- When the residue characteristic of F is not equal to 2, Langlands analyzed the question when H is a maximal torus in G = SL₂, and ρ : ^LH → ^LG is the standard embedding.
- ► The result of G-G-PS was generalized by D. Johnstone in his PhD thesis for H an unramified elliptic torus in G = SL_ℓ, under mild assumptions on the residue characteristic of F and character formulas for the associated supercuspidal representations of SL_ℓ(F), where ℓ is a prime.

Non-abelian situation

What about the case when both H and G are non-abelian?

Focus

 $H = \operatorname{GL}_2, \ G = \operatorname{GL}_{n+1}, \ \rho = \operatorname{Sym}^n;$

- Local Langlands Reciprocity for GL is known;
- L-packets are singleton, stability for GL is equivalent to conjugation invariance;
- The classification of tempered representations for GL is known. *p*-adic by H. Jacquet, Archimedean by A. Knapp and G. Zuckerman.

Preparations

Notation

$$\blacktriangleright T_n \subset B_n \subset \mathrm{GL}_n;$$

- M_n ⊂ P_n ⊂ GL_n corresponds to partition (2, 2, ..., 2) if n is even, and (2, 2, ..., 2, 1) is n is odd;
- ► $D_{\operatorname{GL}_n}(x) = |\det(1 \operatorname{Ad}(x))|_{\mathfrak{gl}_n/(\mathfrak{gl}_n)_x}|$ the Weyl discriminant;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

When $F = \mathbb{C}$

Tempered representations of GL₂(ℂ) are all tempered principal series, i.e. π ≃ Ind^{GL₂}_{B₂}(χ₁, χ₂) where χ₁, χ₂ are unitary characters of ℂ[×];

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

When $F = \mathbb{C}$

- Tempered representations of GL₂(ℂ) are all tempered principal series, i.e. π ≃ Ind^{GL₂}_{B₂}(χ₁, χ₂) where χ₁, χ₂ are unitary characters of ℂ[×];
- The lifting $\rho(\pi)$ of π along ρ is given by

$$\mathrm{Ind}_{B_{n+1}}^{\mathrm{GL}_{n+1}}(\chi_1^n,\chi_1^{n-1}\chi_2,...,\chi_2^n).$$

When $F = \mathbb{C}$

By the explicit character formulas for principal series, it is not hard to derive the following result.

Proposition (Johnstone-L.)

Define Θ^{ρ} as the parabolic induction of $\Theta^{\rho,T}$ from $T_{n+1}(\mathbb{C}) \times T_2(\mathbb{C})$ to $\operatorname{GL}_{n+1}(\mathbb{C}) \times \operatorname{GL}_2(\mathbb{C})$, where $\Theta^{\rho,T}$ is supported on $T_{n+1}^{\operatorname{rss}}(\mathbb{C}) \times T_2^{\operatorname{rss}}(\mathbb{C})$ given by

$$\Theta^{\rho,T}(D,t) = \delta_{\prod_{k=1}^{n+1} D_k^{n+1-k}}(t_1) \otimes \delta_{\prod_{k=1}^{n+1} D_k^{k-1}}(t_2)$$

with $(D, t) = (D_1, ..., D_{n+1}, t_1, t_2)$. Then

$$D^{rac{1}{2}}_{\mathrm{GL}_{n+1}}(g)\mathrm{tr}_{
ho(\pi)}(g) = \int_{\mathrm{GL}_2(F)} \Theta^{
ho}(g,\gamma) D^{rac{1}{2}}_{\mathrm{GL}_2}(\gamma) \mathrm{tr}_{\pi}(\gamma)$$

for any tempered representation π of $GL_2(\mathbb{C})$.

When $F = \mathbb{R}$

Tempered representations

- Tempered principal series Ind^{GL2}_{B2}(χ₁, χ₂) where χ₁, χ₂ are unitary characters of ℝ[×];
- ▶ Discrete series $D_{l,t}$ parametrized by $(l, t) \in \mathbb{N} \times i\mathbb{R}$.

lssue

The distribution constructed before does **NOT** work for discrete series.

Question

How to unify the tempered principal series and discrete series?

When $F = \mathbb{R}$

Observation

Let ω_{π} be the central character of π . The lifting $\rho(\pi)$ for any tempered representation π is always of the form $\operatorname{Ind}_{P_{n+1}}^{\operatorname{GL}_{n+1}}(\pi_{M_{n+1}})$ where

$$\pi_{M_{n+1}} = \begin{cases} \bigotimes_{k=1}^{\frac{n}{2}} \pi_{2k} \bigotimes (\omega_{\pi})^{\frac{n}{2}}, & \text{if } n \text{ is even}, \\ \bigotimes_{k=1}^{\frac{n+1}{2}} \pi_{2k-1}, & \text{if } n \text{ is odd.} \end{cases}$$

if $\pi = \operatorname{Ind}_{B_2}^{\operatorname{GL}_2}(\chi_1, \chi_2)$. Here $\pi_m = (\omega_\pi)^{\frac{n-m}{2}} \otimes \operatorname{Ind}_{B_2}^{\operatorname{GL}_2}(\chi_1^m, \chi_2^m)$;

$$\pi_{M_{n+1}} = \begin{cases} \bigotimes_{k=1}^{\frac{n}{2}} \pi_{2k} \bigotimes (\omega_{\pi})^{\frac{n}{2}}, & \text{if } n \text{ is even}, \\ \bigotimes_{k=1}^{\frac{n+1}{2}} \pi_{2k-1}, & \text{if } n \text{ is odd}. \end{cases}$$

if $\pi = D_{I,t}$. Here $\pi_m = (\omega_\pi)^{\frac{n-m}{2}} \otimes D_{mk,mt}$.

Reduce to M_{n+1}

By the character formula for induced representations, we only need to determine a distribution $\Theta^{M_{n+1}}$ on $M_{n+1}(F) \times \operatorname{GL}_2(F)$ which yields the lifting of distribution characters from π to $\pi_{M_{n+1}}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

When $F = \mathbb{R}$: Character relation

Moreover, we have the following theorem relating character distributions between π and π_m .

Theorem (Johnstone-L.)

 Fix a tempered principal series Ind^{GL2}_{B2}(χ₁, χ₂) of GL₂(F). Then the following equality of locally integrable distributions holds

$$D_{\mathrm{GL}_2}^{\frac{1}{2}}(\gamma^k)\mathrm{tr}_{\mathrm{Ind}(\chi_1,\chi_2)}(\gamma^k) = D_{\mathrm{GL}_2}^{\frac{1}{2}}(\gamma)\mathrm{tr}_{\mathrm{Ind}(\chi_1^k,\chi_2^k)}(\gamma)$$

for any $k \in \mathbb{N}$.

When F = ℝ, let D_{I,t} be the discrete series representation of GL₂(ℝ) associated to (I, t) ∈ ℕ × ℂ. Then the following equality of locally integrable distributions holds

$$D_{\mathrm{GL}_2}^{\frac{1}{2}}(\gamma^k)\mathrm{tr}_{D_{l,t}}(\gamma^k) = D_{\mathrm{GL}_2}^{\frac{1}{2}}(\gamma)\mathrm{tr}_{D_{kl,kt}}(\gamma)$$

for any $k \in \mathbb{N}$ odd.

When $F = \mathbb{R}$: Reduction formula

Assumption

When *n* is **odd**, assume that the distribution $\Theta^{\Delta_{\frac{n+1}{2}}}$ exists where $\Delta_{\frac{n+1}{2}}$ is the diagonal embedding from $\operatorname{GL}_2(\mathbb{C}) \times W_F$ to ${}^L M_{n+1} \simeq (\prod_{i=1}^{\frac{n+1}{2}} \operatorname{GL}_2(\mathbb{C})) \times W_F$,

Definition

Define the distribution $\Theta^{M_{n+1}}$ on $M_{n+1}(\mathbb{R}) \times \operatorname{GL}_2(\mathbb{R}) \simeq (\prod_{i=1}^{\frac{n+1}{2}} \operatorname{GL}_2(\mathbb{R})) \times \operatorname{GL}_2(\mathbb{R})$ as follows,

$$\Theta^{M_{n+1}}(g_1, \dots, g_{\frac{n+1}{2}}, \gamma)$$

$$= \Theta^{\Delta_{\frac{n+1}{2}}}(\det(g_1)^{\frac{n-1}{2}} \cdot g_1, \\ \det(g_2)^{\frac{n-3}{2}} \cdot g_2^3, \dots, \\ \det(g_{\frac{n+1}{2}}) \cdot g_{\frac{n-1}{2}}^{n-2}, \\ g_{\frac{n+1}{2}}^n, \\ \gamma).$$

When $F = \mathbb{R}$: Reduction formula

Corollary (Johnstone-L.)

The following distributional identity holds,

$$D_{M_{n+1}}^{\frac{1}{2}}(m)\mathrm{tr}_{\pi_{M_{n+1}}}(m) = \int_{\mathrm{GL}_2(F)} \Theta^{M_{n+1}}(m,\gamma) D_{\mathrm{GL}_2}^{\frac{1}{2}}(\gamma) \mathrm{tr}_{\pi}(\gamma)$$

for any tempered representation π of $\operatorname{GL}_2(F)$ when F is Archimedean.

Remark

Define Θ^ρ as the parabolic induction of Θ^{M_{n+1}} from M_{n+1}(F) × GL₂(F) to GL_{n+1}(F) × GL₂(F).

When $F = \mathbb{R}$: Reduction formula

Corollary (Johnstone-L.)

The following distributional identity holds,

$$D_{M_{n+1}}^{\frac{1}{2}}(m)\mathrm{tr}_{\pi_{M_{n+1}}}(m) = \int_{\mathrm{GL}_2(F)} \Theta^{M_{n+1}}(m,\gamma) D_{\mathrm{GL}_2}^{\frac{1}{2}}(\gamma) \mathrm{tr}_{\pi}(\gamma)$$

for any tempered representation π of $GL_2(F)$ when F is Archimedean.

Remark

Define Θ^ρ as the parabolic induction of Θ^{M_{n+1}} from M_{n+1}(F) × GL₂(F) to GL_{n+1}(F) × GL₂(F).

• The functoriality for $\Delta_{\frac{n+1}{2}}$ is given by $\pi \to \bigotimes_{i=1}^{\frac{n+1}{2}} \pi$, which is much easier than ρ . However, the existence of $\Theta^{\Delta_{\frac{n+1}{2}}}$ seems to be not easy from analytical point of view.

When F is p-adic

We focus on the case when the residue characteristic of F is **NOT** equal to 2.

Tempered representations

- Tempered principal series;
- Twisted Steinberg representations with unitary central character;
- Supercuspidal representations with unitary central character;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Focus

Supercuspidal representations.

When F is p-adic: Supercuspidal representations

By R. Howe, the supercuspidal representations of GL₂(F) can be parametrized by admissible pairs (E/F, θ) with E/F a tamely ramified quadratic extension, and θ an admissible character of E[×]. For each admissible pair (E/F, θ), we denote the corresponding supercuspidal representation by π_θ;

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

When F is p-adic: Supercuspidal representations

- By R. Howe, the supercuspidal representations of GL₂(F) can be parametrized by admissible pairs (E/F, θ) with E/F a tamely ramified quadratic extension, and θ an admissible character of E[×]. For each admissible pair (E/F, θ), we denote the corresponding supercuspidal representation by π_θ;
- The functorial lifting $\rho(\pi)$ of $\pi = \pi_{\theta}$ is also of the form $\operatorname{Ind}_{P_{n+1}}^{\operatorname{GL}_{n+1}} \pi_{M_{n+1}}$, where

$$\pi_{M_{n+1}} = \begin{cases} \bigotimes_{k=1}^{\frac{n}{2}} \pi_{2k} \bigotimes (\theta|_{F^{\times}})^{\frac{n}{2}}, & \text{if } n \text{ is even}, \\ \bigotimes_{k=1}^{\frac{n+1}{2}} \pi_{2k-1}, & \text{if } n \text{ is odd}. \end{cases}$$

Here $\pi_m = (\theta|_{F^{\times}})^{\frac{n-m}{2}} \otimes \pi_{\theta^m}$ where π_{θ^m} is the tempered representation of $\operatorname{GL}_2(F)$ with tempered *L*-parameter $\operatorname{Ind}_{W_F}^{W_F} \theta^m$. Note: $\theta|_{F^{\times}}$ is the central character of π_{θ} .

When F is p-adic: Character relation

Similar to the Archimedean case, we have the following relation between character distributions of π_{θ^k} and π_{θ} .

Let π_θ be the supercuspidal representation of GL₂(F) associated to an admissible pair (E/F, θ). Then the following equality holds as locally integrable distributions, whenever k ∈ N is coprime to (q − 1)q(q + 1), where q is the cardinality of the residue field of F

$$D^{rac{1}{2}}_{\operatorname{GL}_2}(\gamma^k)\operatorname{tr}_{\pi_{ heta}}(\gamma^k) = D^{rac{1}{2}}_{\operatorname{GL}_2}(\gamma)\operatorname{tr}_{\pi_{ heta^k}}(\gamma).$$

Remark

Under mild assumptions on k and q, except twisted Steinberg representations, the distribution characters of tempered representations behave like characters (for abelian groups).

Thank you!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ