A twisted Yu construction and Harish-Chandra characters

Tasho Kaletha

University of Michigan

CARTOON
31. May 2020

A tale of three sign characters

$$
G \supset T \xrightarrow{\epsilon_{*}}\{ \pm 1\}
$$

- ϵ_{\sharp} from Bruhat-Tits theory
- ϵ_{b} from Galois theory
- ϵ_{f} from Lie theory

Yu's construction of supercuspudal representations

Yu's construction

$$
\left\{\begin{array}{c}
\left(G^{0} \subset G^{1} \subset \ldots \subset G^{d}=G\right) \\
\pi_{-1} \\
\left(\phi_{0}, \phi_{1}, \ldots, \phi_{d}\right)
\end{array}\right\} \xrightarrow{\text { J.K.Yu }} \underset{\substack{\text { irred. s.c reps of } G \\
\pi_{i}=\text { c-Ind } \\
\mathcal{K}_{i}^{\prime} i \\
\rho_{i}}}{ }
$$

Yu's construction is exhaustive when

- Kim 2007: $p \gg 0$ and $\operatorname{char}(F)=0$.
- Fintzen 2018: $p \nmid \# W$, any char (F).

Harish-Chandra character formula (Adler-Spice 2008)
$\Theta_{\pi_{d}}\left(\gamma_{<r} \cdot \gamma_{\geq r}\right)=\sum_{\substack{g \in G^{d-1} \backslash G / C_{G}(\gamma, r) \\ g_{\gamma<r} \in G^{d-1}}}$ (roots of unity) $\cdot \Theta_{\pi_{d-1}}\left({ }^{g} \gamma_{<r}\right) \widehat{\mu}\left(\log \left({ }^{g} \gamma_{\geq r}\right)\right)$
Assumption: G^{d-1} / Z_{G} compact!

The toral case

Toral representations

$$
\left(T=G^{0} \subset G^{1}=G, \phi_{0}\right) \mapsto \pi \quad \text { toral }
$$

T unramified

- Reeder 2008: Organized into L-packets
- DeBacker-Spice 2018: Obstruction to stability: $\epsilon_{\sharp}: T(F) \rightarrow\{ \pm 1\}$.
T ramified, ϕ_{0} minimal depth (epipelagic)
- K. 2015: Organized into L-packets (also cf. Reeder-Yu)
- K. 2015: Obstruction to stability: $\epsilon_{f}: T(F) \rightarrow\{ \pm 1\}$.
T general, ϕ_{0} general
- K. 2019: Organized into L-packets
- K. 2019: Obstruction to stability: $\epsilon_{\sharp} \cdot \epsilon_{f} \rightsquigarrow$ absorb into ϕ_{0}

The regular case

Regular representations

Arbitrary Yu-datum, but π_{-1} regular Deligne-Lusztig $\rightsquigarrow \pi$ regular
K. 2019

- $\pi_{-1} \leftrightarrow\left(T, \phi_{-1}\right), \quad T \subset G^{0}, \phi_{-1}: T \rightarrow \mathbb{C}^{\times}$. Set $\theta=\prod_{i=-1}^{d} \phi_{i}$.
- Reg. s.c. $\pi \quad \leftrightarrow \quad$ G-conj classes of (T, θ). Just like d.s. over \mathbb{R}.
- If $\gamma \in T$ is shallow, AS formula holds without G^{d-1} / Z_{G} compact.
- $\Theta_{\pi}(\gamma)=\boldsymbol{e}(G) \epsilon\left(X^{*}\left(T_{0}\right)_{\mathbb{C}}-X^{*}(T)_{\mathbb{C}}\right) \sum_{w} \Delta_{I I}^{\text {abs }}\left(\gamma^{w}\right) \epsilon_{f}\left(\gamma^{w}\right) \epsilon_{\sharp}\left(\gamma^{w}\right) \theta\left(\gamma^{w}\right)$.
- Same formula as for discrete series over \mathbb{R}, up to $\epsilon_{\epsilon} \epsilon_{\sharp}$.
- Sweep under the rug: Absorb $\epsilon_{f} \epsilon_{\sharp}$ into θ.
- Obtain LLC by mimicking Langlands argument over \mathbb{R}.
- $\varphi: W_{F} \rightarrow{ }^{L} G$ strongly regular: $\operatorname{Cent}\left(\varphi\left(I_{F}\right), \widehat{G}\right)$ abelian.
- Functoriality for ${ }^{L} T \xrightarrow{\chi}{ }^{L} G$:
$e(G) \epsilon\left(X^{*}\left(T_{0}\right)_{\mathbb{C}}-X^{*}(T)_{\mathbb{C}}\right) \sum_{w} \Delta_{I /}^{\text {abs }}[\chi]\left(\gamma^{w}\right) \theta_{\chi}\left(\gamma^{w}\right)$.

The rug strikes back

Spice: Drop compactness from AS formula for arbitrary γ

- Mistake in Yu's paper! Due to typo in Gerardin 1977.
- Yu's intertwining proof fails. Irreducibility proof fails.
- Fintzen 2018: Intertwining claim false, but irreducibility still true.
- But: still need intertwining for character formula. Obstruction: ϵ_{\sharp}.
- Hope: ϵ_{\sharp} extends from T to G_{x}^{0}.

K: Construct LLC for arbitrary supercuspidal parameters, $p \nmid \# W$

- π_{-1} no longer regular, must pass from G^{0} to G rather than T to G.
- Dually, must replace ${ }^{L} T \rightarrow{ }^{L} G$ with ${ }^{L} G^{0} \rightarrow{ }^{L} G$. Introduces: ϵ_{b}.
- Hope: ϵ_{b} extends from T to G_{x}^{0}.

Dashed hopes

Neither of $\epsilon_{\sharp}, \epsilon_{b}$ extends from T to G_{x}^{0}.

Formulas

$$
\epsilon_{\sharp}(\gamma)=\prod_{\substack{\alpha \in R(T, G)_{\text {asym }}^{\alpha(\gamma)=1} \\ r / 2 \in \operatorname{ord}_{x}(\alpha)}} \operatorname{sgn}_{k_{\alpha}^{\times}}(\alpha(\gamma)) \cdot \prod_{\substack{\alpha \in R(T, G) \\ \alpha(\gamma) \neq 1 \\ r / 2 \in \operatorname{ord}_{x}(\alpha)}} \operatorname{sgn}_{k_{\alpha}^{1}}(\alpha(\gamma)) .
$$

$$
\epsilon_{b}(\gamma)=\prod_{\substack{\alpha \in R(T, G) a_{\text {asym }} / \Sigma \\ \alpha(\gamma) \neq 1 \\ \alpha_{0} \in R\left(Z^{0}, G\right)_{\text {sym,ram }} \\ 2 \nmid e\left(\alpha / \alpha_{0}\right)}} \operatorname{sgn}_{k_{\alpha}^{\times} \times}(\alpha(\gamma)) \cdot \prod_{\substack{\alpha \in R(T, G)_{\text {sym,unam }} / \Gamma \\ \alpha(\gamma)=1 \\ \alpha_{0} \in R\left(Z^{0}, G\right)_{\text {sym,ram }} \\ 2 \nmid e\left(\alpha / \alpha_{0}\right)}} \operatorname{sgn}_{k_{\alpha}^{1}}(\alpha(\gamma)) .
$$

Main technical result

Theorem (FKS 2019)
There exists a canonical sign character $\epsilon: G_{x}^{0} \rightarrow\{ \pm 1\}$ such that for every tame maximal torus $T \subset G$ with $x \in \mathcal{B}(T)$ one has

$$
\left.\epsilon\right|_{T}=\epsilon_{\sharp} \cdot \epsilon_{b} \cdot \epsilon_{f} \cdot \epsilon_{a u x} .
$$

Remarks

- ϵ_{aux} is very benign, easily extends to G_{x}^{0}.
- ϵ_{f} came for free.

Construction of ϵ

Piece \#1

H aff. alg. group over k, possibly disconnected, H° reductive βH-invariant non-degenerate symmetric bilinear form on $\mathfrak{h}=\operatorname{Lie}(H)$ Ad : $H(k) \rightarrow O(\mathfrak{h}, \beta)(k) \xrightarrow{s p} k^{\times} / k^{\times, 2} \rightarrow\{ \pm 1\}$

Piece \#2

H aff. alg. group over k, possibly disconnected
$X^{*}(H) \xrightarrow{2} X^{*}(H)=\operatorname{Hom}_{\bar{k}}\left(H, \mathbb{G}_{m} \xrightarrow{2} \mathbb{G}_{m}\right)$ complex
$H^{1}\left(\Gamma, \operatorname{Hom}\left(H, \mathbb{G}_{m} \xrightarrow{2} \mathbb{G}_{m}\right)\right) \rightarrow \operatorname{Hom}\left(H(k), H^{1}\left(\Gamma, \mathbb{G}_{m} \xrightarrow{2} \mathbb{G}_{m}\right)\right)=$ $\operatorname{Hom}\left(H(k), H^{1}\left(\Gamma, \mu_{2}\right)\right)=\operatorname{Hom}\left(H(k), k^{\times} / k^{\times, 2}\right)$

Piece \#3

$$
\operatorname{sgn}_{k^{x}}\left(\operatorname{det}\left(-\mid \bigoplus_{\alpha_{0} \in R\left(Z^{0}, G\right)_{\text {sym.ram }} / \Gamma} \bigoplus_{t \in\left(0, e_{\alpha_{0}^{-1}}\right)} \mathfrak{g}_{\alpha_{0}}\left(F^{u}\right)_{x, t: t+}\right)\right)
$$

The rewards

A twisted Yu construction

Replace ρ_{i} by $\rho_{i} \otimes \epsilon$ in Yu's construction.
Reward: Yu's intertwining claims now hold.
Theorem (Spice, in preparation)
Assume π_{-1} is a Deligne-Lusztig induction from $T \subset G^{0}$.

$$
\Theta_{\pi}\left(\gamma_{0} \cdot \gamma_{>0}\right)=\sum_{\substack{g \in T \backslash G / C_{G}\left(\gamma_{0}\right) \\ g \gamma_{0} \in T}}(\text { roots of unity }) \cdot \epsilon\left({ }^{g} \gamma_{0}\right) \theta\left({ }^{g} \gamma_{0}\right) \widehat{\mu}\left(\log \left({ }^{g} \gamma_{>0}\right)\right)
$$

Roots of unity

$\epsilon=\epsilon_{\sharp} \cdot \epsilon_{\mathrm{b}} \cdot \epsilon_{f} \cdot \epsilon_{\mathrm{aux}}$. Recall $\epsilon_{\sharp}, \epsilon_{\mathrm{b}}, \epsilon_{f}$ were obstructions. They now cancel. What about $\epsilon_{\text {aux }} ? \Delta_{I /}^{\text {abs }}\left[\chi_{T}\right](\gamma) \cdot \epsilon_{\text {aux }}(\gamma)=\Delta_{I /}^{\text {abs }}\left[\chi_{Z^{0}}\right](\gamma)$.

Theorem (FKS 2020)
$\Theta_{\pi}\left(\gamma_{0} \cdot \gamma_{>0}\right)=e(G) \epsilon\left(X^{*}\left(T_{0}\right)_{\mathbb{C}}-X^{*}(T)_{\mathbb{C}}\right) \sum_{g} \Delta_{\| l}^{a b s}\left(\gamma_{0}^{g}\right) \theta\left(\gamma_{0}^{g}\right) \widehat{\mu}\left(\log \left(\gamma_{>0}^{g}\right)\right)$.

The rewards, continued

LLC from G^{0} to G, assuming $p \nmid \# W$

- If we understand LLC for depth-zero supercuspidal parameters, we get LLC for all supercuspidal parameters, via ${ }^{L} G^{0} \rightarrow{ }^{L} G$.
- But we do understand LLC for d.z. s.c. parameters!
- Thus: We have explicit LLC for all supercuspidal parameters, including internal structure of L-packets.

Character identities

$S_{\varphi}=\operatorname{Cent}\left(\varphi\left(W_{F}\right), \widehat{G}\right) . \operatorname{Irr}\left(S_{\varphi}\right) \leftrightarrow \Pi_{\varphi}$.
$s \in S_{\varphi}: \Theta_{\varphi}^{s}=e(G) \sum_{\rho} \operatorname{tr} \rho(s) \Theta_{\pi_{\rho}} \cdot \widehat{H}=\operatorname{Cent}(s, \widehat{G}) . \Theta_{\varphi}^{s}(f)=\Theta_{\varphi^{H}}^{s}\left(f^{H}\right)$.
Theorem (FKS 2020, p >>0)
If φ is regular, character identities hold.
For general $\varphi, 1 \rightarrow \widehat{T}^{\ulcorner } \rightarrow S_{\varphi} \rightarrow \Omega \rightarrow 1$, and char id hold for $s \in \widehat{T}^{\ulcorner }$.

Thank You!

