A twisted Yu construction and Harish-Chandra characters

Tasho Kaletha

University of Michigan

CARTOON 31. May 2020

Tasho Kaletha (University of Michigan)

A twisted Yu construction

A tale of three sign characters

- ϵ_{\sharp} from Bruhat-Tits theory
- ϵ_{\flat} from Galois theory
- ϵ_f from Lie theory

Yu's construction of supercuspudal representations

Yu's construction

$$\left\{\begin{array}{c} (G^{0} \subset G^{1} \subset \cdots \subset G^{d} = G) \\ \pi_{-1} \\ (\phi_{0}, \phi_{1}, \dots, \phi_{d}) \end{array}\right\} \xrightarrow{\text{J.K.Yu}} \left\{\text{irred. s.c reps of } G\right\} \\ \pi_{i} = \text{c-Ind}_{\mathcal{K}^{i}\rho_{i}}^{G^{i}}$$

Yu's construction is exhaustive when

- Kim 2007: *p* >> 0 and char(*F*) = 0.
- Fintzen 2018: $p \nmid \#W$, any char(F).

Harish-Chandra character formula (Adler-Spice 2008)

$$\Theta_{\pi_d}(\gamma_{< r} \cdot \gamma_{\geq r}) = \sum_{\substack{g \in G^{d-1} \setminus G/C_G(\gamma_{< r}) \\ g_{\gamma_{< r} \in G^{d-1}}}} (\text{roots of unity}) \cdot \Theta_{\pi_{d-1}}(^g \gamma_{< r}) \widehat{\mu}(\log(^g \gamma_{\geq r}))$$

Assumption: G^{d-1}/Z_G compact!

The toral case

Toral representations

$$(T = G^0 \subset G^1 = G, \phi_0) \mapsto \pi$$
 toral

T unramified

- Reeder 2008: Organized into L-packets
- DeBacker-Spice 2018: Obstruction to stability: $\epsilon_{\sharp} : T(F) \rightarrow \{\pm 1\}$.

T ramified, ϕ_0 minimal depth (epipelagic)

- K. 2015: Organized into L-packets (also cf. Reeder-Yu)
- K. 2015: Obstruction to stability: $\epsilon_f : T(F) \to \{\pm 1\}$.

T general, ϕ_0 general

- K. 2019: Organized into L-packets
- K. 2019: Obstruction to stability: $\epsilon_{\sharp} \cdot \epsilon_f \quad \rightsquigarrow \quad \text{absorb into } \phi_0$

The regular case

Regular representations

Arbitrary Yu-datum, but π_{-1} regular Deligne-Lusztig $\rightsquigarrow \pi$ regular

K. 2019

- $\pi_{-1} \quad \leftrightarrow \quad (T, \phi_{-1}), \quad T \subset G^0, \ \phi_{-1} : T \to \mathbb{C}^{\times}. \text{ Set } \theta = \prod_{i=-1}^d \phi_i.$
- Reg. s.c. $\pi \leftrightarrow G$ -conj classes of (T, θ) . Just like d.s. over \mathbb{R} .
- If $\gamma \in T$ is shallow, AS formula holds without G^{d-1}/Z_G compact.
- $\Theta_{\pi}(\gamma) = e(G)\epsilon(X^*(T_0)_{\mathbb{C}} X^*(T)_{\mathbb{C}}) \sum_{w} \Delta^{abs}_{II}(\gamma^w)\epsilon_f(\gamma^w)\epsilon_{\sharp}(\gamma^w)\theta(\gamma^w).$
- Same formula as for discrete series over \mathbb{R} , up to $\epsilon_f \epsilon_{\sharp}$.
- Sweep under the rug: Absorb $\epsilon_f \epsilon_{\sharp}$ into θ .
- $\bullet\,$ Obtain LLC by mimicking Langlands argument over $\mathbb R.$
- $\varphi: W_F \to {}^LG$ strongly regular: Cent $(\varphi(I_F), \widehat{G})$ abelian.
- Functoriality for ${}^{L}T \xrightarrow{\chi} {}^{L}G$: $e(G)\epsilon(X^{*}(T_{0})_{\mathbb{C}} - X^{*}(T)_{\mathbb{C}}) \sum_{w} \Delta_{II}^{abs}[\chi](\gamma^{w})\theta_{\chi}(\gamma^{w}).$

The rug strikes back

Spice: Drop compactness from AS formula for arbitrary γ

- Mistake in Yu's paper! Due to typo in Gerardin 1977.
- Yu's intertwining proof fails. Irreducibility proof fails.
- Fintzen 2018: Intertwining claim false, but irreducibility still true.
- But: still need intertwining for character formula. Obstruction: ε_μ.
- Hope: ϵ_{\sharp} extends from T to G_{χ}^{0} .

K: Construct LLC for *arbitrary* supercuspidal parameters, $p \nmid \#W$

- π_{-1} no longer regular, must pass from G^0 to G rather than T to G.
- Dually, must replace ${}^{L}T \rightarrow {}^{L}G$ with ${}^{L}G^{0} \rightarrow {}^{L}G$. Introduces: ϵ_{\flat} .
- Hope: ϵ_{\flat} extends from T to G_{χ}^{0} .

Dashed hopes

Neither of ϵ_{\sharp} , ϵ_{\flat} extends from *T* to G_x^0 .

Tasho Kaletha (University of Michigan)

Formulas

$$\epsilon_{\sharp}(\gamma) = \prod_{\substack{\alpha \in \mathcal{R}(T,G)_{\operatorname{asym}}/\Sigma \\ \alpha(\gamma) \neq 1 \\ r/2 \in \operatorname{ord}_{X}(\alpha)}} \operatorname{sgn}_{k_{\alpha}^{\times}}(\alpha(\gamma)) \cdot \prod_{\substack{\alpha \in \mathcal{R}(T,G)_{\operatorname{sym,unram}}/\Gamma \\ \alpha(\gamma) \neq 1 \\ r/2 \in \operatorname{ord}_{X}(\alpha)}} \operatorname{sgn}_{k_{\alpha}^{1}}(\alpha(\gamma)).$$

$$\epsilon_{\flat}(\gamma) = \prod_{\substack{\alpha \in \mathcal{R}(T,G)_{\operatorname{asym}}/\Sigma \\ \alpha(\gamma) \neq 1 \\ \alpha_0 \in \mathcal{R}(Z^0,G)_{\operatorname{sym,ram}} \\ 2 \nmid e(\alpha/\alpha_0)}} \operatorname{sgn}_{k_{\alpha}^{\times}}(\alpha(\gamma)) \cdot \prod_{\substack{\alpha \in \mathcal{R}(T,G)_{\operatorname{sym,unram}}/\Gamma \\ \alpha(\gamma) \neq 1 \\ \alpha_0 \in \mathcal{R}(Z^0,G)_{\operatorname{sym,ram}} \\ 2 \nmid e(\alpha/\alpha_0)}} \operatorname{sgn}_{k_{\alpha}^{\times}}(\alpha(\gamma)) \cdot \prod_{\substack{\alpha \in \mathcal{R}(T,G)_{\operatorname{sym,unram}}/\Gamma \\ \alpha(\gamma) \neq 1 \\ \alpha_0 \in \mathcal{R}(Z^0,G)_{\operatorname{sym,ram}} \\ 2 \restriction e(\alpha/\alpha_0)}} \operatorname{sgn}_{k_{\alpha}^{\times}}(\alpha(\gamma)) \cdot \prod_{\substack{\alpha \in \mathcal{R}(T,G)_{\operatorname{sym,unram}}/\Gamma \\ \alpha(\gamma) \neq 1 \\ \alpha_0 \in \mathcal{R}(Z^0,G)_{\operatorname{sym,ram}} \\ 2 \restriction e(\alpha/\alpha_0)}} \operatorname{sgn}_{k_{\alpha}^{\times}}(\alpha(\gamma)) \cdot \prod_{\substack{\alpha \in \mathcal{R}(T,G)_{\operatorname{sym,unram}}/\Gamma \\ \alpha(\gamma) \neq 1 \\ \alpha_0 \in \mathcal{R}(Z^0,G)_{\operatorname{sym,ram}} \\ \alpha(\gamma) \neq 1 \\ \alpha(\gamma) \in \mathcal{R}(Z^0,G)_{\operatorname{sym,ram}} \\ \alpha(\gamma) \in \mathcal{R}(Z^0,G)_{\operatorname{sym,ram}} \\ \alpha(\gamma) \neq 1 \\ \alpha(\gamma) \in \mathcal{R}(Z^0,G)_{\operatorname{sym,ram}} \\ \alpha(\gamma) \in \mathcal{R}(Z^0,G)_{$$

Tasho Kaletha (University of Michigan)

A twisted Yu construction

CARTOON 31. May 2020 7/12

Main technical result

Theorem (FKS 2019)

There exists a canonical sign character $\epsilon : G_x^0 \to \{\pm 1\}$ such that for every tame maximal torus $T \subset G$ with $x \in \mathcal{B}(T)$ one has

$$\epsilon|_{\mathcal{T}} = \epsilon_{\sharp} \cdot \epsilon_{\flat} \cdot \epsilon_{f} \cdot \epsilon_{aux}.$$

Remarks

- ϵ_{aux} is very benign, easily extends to G_{χ}^{0} .
- ϵ_f came for free.

Construction of ϵ

Piece #1

H aff. alg. group over *k*, possibly disconnected, H° reductive β *H*-invariant non-degenerate symmetric bilinear form on $\mathfrak{h} = \operatorname{Lie}(H)$ Ad : $H(k) \to O(\mathfrak{h}, \beta)(k) \xrightarrow{sp} k^{\times}/k^{\times,2} \dashrightarrow \{\pm 1\}$

Piece #2

H aff. alg. group over *k*, possibly disconnected

$$X^*(H) \xrightarrow{2} X^*(H) = \operatorname{Hom}_{\overline{k}}(H, \mathbb{G}_m \xrightarrow{2} \mathbb{G}_m)$$
 complex
 $H^1(\Gamma, \operatorname{Hom}(H, \mathbb{G}_m \xrightarrow{2} \mathbb{G}_m)) \to \operatorname{Hom}(H(k), H^1(\Gamma, \mathbb{G}_m \xrightarrow{2} \mathbb{G}_m)) =$
 $\operatorname{Hom}(H(k), H^1(\Gamma, \mu_2)) = \operatorname{Hom}(H(k), k^{\times}/k^{\times,2})$

Piece #3

$$\operatorname{sgn}_{k^{\times}}\left(\det\left(-\left|\bigoplus_{\alpha_{0}\in R(Z^{0},G)_{\operatorname{sym.ram}}/\Gamma}\bigoplus_{t\in(0,e_{\alpha_{0}}^{-1})}\mathfrak{g}_{\alpha_{0}}(F^{u})_{x,t:t+}\right)\right)\right)$$

Tasho Kaletha (University of Michigan)

A twisted Yu construction

The rewards

A twisted Yu construction

Replace ρ_i by $\rho_i \otimes \epsilon$ in Yu's construction.

Reward: Yu's intertwining claims now hold.

Theorem (Spice, in preparation)

 $\begin{array}{l} \text{Assume } \pi_{-1} \text{ is a Deligne-Lusztig induction from } T \subset G^{0}.\\ \Theta_{\pi}(\gamma_{0} \cdot \gamma_{>0}) = \sum_{\substack{g \in T \setminus G/C_{G}(\gamma_{0}) \\ g_{\gamma_{0}} \in T}} (\text{roots of unity}) \cdot \epsilon({}^{g}\gamma_{0})\theta({}^{g}\gamma_{0})\widehat{\mu}(\log({}^{g}\gamma_{>0})) \end{array}$

Roots of unity

 $\epsilon = \epsilon_{\sharp} \cdot \epsilon_{\flat} \cdot \epsilon_{f} \cdot \epsilon_{aux}$. Recall $\epsilon_{\sharp}, \epsilon_{\flat}, \epsilon_{f}$ were obstructions. They now cancel. What about ϵ_{aux} ? $\Delta_{II}^{abs}[\chi_{T}](\gamma) \cdot \epsilon_{aux}(\gamma) = \Delta_{II}^{abs}[\chi_{Z^{0}}](\gamma)$.

Theorem (FKS 2020)

$$\Theta_{\pi}(\gamma_{0} \cdot \gamma_{>0}) = \boldsymbol{e}(\boldsymbol{G}) \epsilon(\boldsymbol{X}^{*}(\boldsymbol{T}_{0})_{\mathbb{C}} - \boldsymbol{X}^{*}(\boldsymbol{T})_{\mathbb{C}}) \sum_{\boldsymbol{g}} \Delta_{\boldsymbol{II}}^{abs}(\gamma_{0}^{\boldsymbol{g}}) \theta(\gamma_{0}^{\boldsymbol{g}}) \widehat{\mu}(\log(\gamma_{>0}^{\boldsymbol{g}})).$$

Tasho Kaletha (University of Michigan)

10/12

The rewards, continued

LLC from G^0 to G, assuming $p \nmid \#W$

- If we understand LLC for depth-zero supercuspidal parameters, we get LLC for all supercuspidal parameters, via ^LG⁰ → ^LG.
- But we do understand LLC for d.z. s.c. parameters!
- Thus: We have explicit LLC for all supercuspidal parameters, including internal structure of *L*-packets.

Character identities

$$\begin{split} & \mathcal{S}_{\varphi} = \operatorname{Cent}(\varphi(W_{\mathcal{F}}), \widehat{G}). \operatorname{Irr}(\mathcal{S}_{\varphi}) \leftrightarrow \Pi_{\varphi}. \\ & s \in \mathcal{S}_{\varphi}: \Theta_{\varphi}^{s} = e(G) \sum_{\rho} \operatorname{tr}_{\rho}(s) \Theta_{\pi_{\rho}}. \ \widehat{H} = \operatorname{Cent}(s, \widehat{G}). \ \boxed{\Theta_{\varphi}^{s}(f) = \Theta_{\varphi^{H}}^{s}(f^{H})}. \end{split}$$

Theorem (FKS 2020, *p* >> 0)

If φ is regular, character identities hold. For general φ , $1 \to \widehat{T}^{\Gamma} \to S_{\varphi} \to \Omega \to 1$, and char id hold for $s \in \widehat{T}^{\Gamma}$.

Tasho Kaletha (University of Michigan)

A twisted Yu construction

Thank You!