Vanishing theorems for Shimura varieties

Ana Caraiani

Imperial College London

CARTOON, May 2020

Brief overview of Shimura varieties

- Brief overview of Shimura varieties
- Conjectures about vanishing of cohomology

- Brief overview of Shimura varieties
- Onjectures about vanishing of cohomology
- Perfectoid geometry of Shimura varieties

- Brief overview of Shimura varieties
- Onjectures about vanishing of cohomology
- Operfectoid geometry of Shimura varieties
- Results for completed cohomology

- Brief overview of Shimura varieties
- Onjectures about vanishing of cohomology
- Operfectoid geometry of Shimura varieties
- Results for completed cohomology
- Results at finite level

• *G*/ \mathbb{Q} is a connected reductive group

- G/\mathbb{Q} is a connected reductive group
- X is a $G(\mathbb{R})$ -conjugacy class of homomorphisms

$$\mathbb{S} := \operatorname{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{G}_m \to \mathcal{G}_{\mathbb{R}}$$

- *G*/Q is a connected reductive group
- X is a $G(\mathbb{R})$ -conjugacy class of homomorphisms

$$\mathbb{S} := \mathrm{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{G}_m \to \mathcal{G}_{\mathbb{R}}$$

• the pair (G, X) satisfies certain axioms, which in particular ensure that X is a variation of Hodge structures.

- G/Q is a connected reductive group
- X is a $G(\mathbb{R})$ -conjugacy class of homomorphisms

$$\mathbb{S} := \mathrm{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{G}_m \to \mathcal{G}_{\mathbb{R}}$$

• the pair (G, X) satisfies certain axioms, which in particular ensure that X is a variation of Hodge structures.

For $K \subset G(\mathbb{A}_f)$ a neat compact open subgroup, let X_K/E be the corresponding Shimura variety,

- G/Q is a connected reductive group
- X is a $G(\mathbb{R})$ -conjugacy class of homomorphisms

$$\mathbb{S} := \mathrm{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{G}_m \to \mathcal{G}_{\mathbb{R}}$$

• the pair (G, X) satisfies certain axioms, which in particular ensure that X is a variation of Hodge structures.

For $K \subset G(\mathbb{A}_f)$ a neat compact open subgroup, let X_K/E be the corresponding Shimura variety, which satisfies

$$X_{\mathcal{K}}(\mathbb{C}) = G(\mathbb{Q}) ackslash X imes G(\mathbb{A}_f) / \mathcal{K}$$

•
$$G = GL_2$$
,

•
$$G = \operatorname{GL}_2, X = \mathcal{H}^{\pm},$$

• $\mathcal{G} = \operatorname{GL}_2, \mathcal{X} = \mathcal{H}^{\pm}$, the $X_{\mathcal{K}}/\mathbb{Q}$ are modular curves:

Examples

• $\mathcal{G} = \operatorname{GL}_2, \mathcal{X} = \mathcal{H}^{\pm}$, the $X_{\mathcal{K}}/\mathbb{Q}$ are modular curves:

$$X_{\mathcal{K}}(\mathbb{C}) = \operatorname{GL}_2(\mathbb{Q}) \setminus \mathcal{H}^{\pm} \times \operatorname{GL}_2(\mathbb{A}_f) / \mathcal{K} = \bigsqcup_{i=1}^n \Gamma_i \setminus \mathcal{H},$$

• $G = GL_2, X = \mathcal{H}^{\pm}$, the X_K/\mathbb{Q} are modular curves:

$$X_{\mathcal{K}}(\mathbb{C}) = \operatorname{GL}_2(\mathbb{Q}) \setminus \mathcal{H}^{\pm} \times \operatorname{GL}_2(\mathbb{A}_f) / \mathcal{K} = \bigsqcup_{i=1}^n \Gamma_i \setminus \mathcal{H},$$

where each $\Gamma_i \subseteq SL_2(\mathbb{Z})$ is a congruence subgroup.

Examples

• $G = \operatorname{GL}_2, X = \mathcal{H}^{\pm}$, the X_K/\mathbb{Q} are modular curves:

$$X_{\mathcal{K}}(\mathbb{C}) = \operatorname{GL}_2(\mathbb{Q}) \setminus \mathcal{H}^{\pm} \times \operatorname{GL}_2(\mathbb{A}_f) / \mathcal{K} = \bigsqcup_{i=1}^n \Gamma_i \setminus \mathcal{H},$$

where each $\Gamma_i \subseteq SL_2(\mathbb{Z})$ is a congruence subgroup.

• $G = \operatorname{GSp}_{2g}$, X is Siegel double space, the X_K are Siegel modular varieties.

- $G = GSp_{2g}$, X is Siegel double space, the X_K are Siegel modular varieties.
- Shimura varieties of Hodge type: admit a closed embedding

$$(G,X) \hookrightarrow (\widetilde{G},\widetilde{X}),$$

where $(\widetilde{G}, \widetilde{X})$ is a Siegel datum. Example: G unitary similitude group.

- $G = GSp_{2g}$, X is Siegel double space, the X_K are Siegel modular varieties.
- Shimura varieties of Hodge type: admit a closed embedding

$$(G,X) \hookrightarrow (\widetilde{G},\widetilde{X}),$$

where $(\widetilde{G}, \widetilde{X})$ is a Siegel datum. Example: G unitary similitude group.

 Shimura varieties of abelian type: closely related to Hodge type. Example: G = Res_{F/Q}GL₂, F totally real field, X_K are Hilbert modular varieties.

- $G = GSp_{2g}$, X is Siegel double space, the X_K are Siegel modular varieties.
- Shimura varieties of Hodge type: admit a closed embedding

$$(G,X) \hookrightarrow (\widetilde{G},\widetilde{X}),$$

where $(\widetilde{G}, \widetilde{X})$ is a Siegel datum. Example: G unitary similitude group.

- Shimura varieties of abelian type: closely related to Hodge type. Example: G = Res_{F/Q}GL₂, F totally real field, X_K are Hilbert modular varieties.
- Beyond abelian type. Examples: those associated to Dynkin diagrams of types E_6 , E_7 .

• The spherical Hecke algebra $\mathbb T$ acts on $H^*_{(c)}(X_{\mathcal K}(\mathbb C),\mathbb C).$

- The spherical Hecke algebra \mathbb{T} acts on $H^*_{(c)}(X_{\mathcal{K}}(\mathbb{C}),\mathbb{C})$.
- The systems of Hecke eigenvalues that occur can be described in terms of *automorphic representations* of *G*.

- The spherical Hecke algebra \mathbb{T} acts on $H^*_{(c)}(X_{\mathcal{K}}(\mathbb{C}),\mathbb{C})$.
- The systems of Hecke eigenvalues that occur can be described in terms of *automorphic representations* of *G*.
- $\bullet\,$ If $\mathfrak{m}\subset\mathbb{T}$ is a non-Eisenstein maximal ideal, we expect

 $H_{(c)}^{i}(X_{\mathcal{K}}(\mathbb{C}),\mathbb{C})_{\mathfrak{m}}\neq 0 \text{ only if } i=d:=\dim_{E}X_{\mathcal{K}}.$

- The spherical Hecke algebra \mathbb{T} acts on $H^*_{(c)}(X_{\mathcal{K}}(\mathbb{C}),\mathbb{C})$.
- The systems of Hecke eigenvalues that occur can be described in terms of *automorphic representations* of *G*.
- \bullet If $\mathfrak{m}\subset\mathbb{T}$ is a non-Eisenstein maximal ideal, we expect

$$H_{(c)}^{i}(X_{\mathcal{K}}(\mathbb{C}),\mathbb{C})_{\mathfrak{m}}\neq 0 \text{ only if } i=d:=\dim_{E}X_{\mathcal{K}}.$$

This is predicted by Arthur's conjectures, and essentially follows from work of Borel–Wallach, Franke.

 $H_{(c)}^{i}(X_{\mathcal{K}}(\mathbb{C}),\mathbb{F}_{\ell})_{\mathfrak{m}}\neq 0 \text{ only if } i=d:=\dim_{E}X_{\mathcal{K}}.$

 $H^i_{(c)}(X_{\mathcal{K}}(\mathbb{C}),\mathbb{F}_{\ell})_{\mathfrak{m}}\neq 0 \text{ only if } i=d:=\dim_E X_{\mathcal{K}}.$

This is conjectured by Calegari-Geraghty, Emerton. Why?

 $H_{(c)}^{i}(X_{\mathcal{K}}(\mathbb{C}),\mathbb{F}_{\ell})_{\mathfrak{m}}\neq 0 \text{ only if } i=d:=\dim_{E}X_{\mathcal{K}}.$

This is conjectured by Calegari-Geraghty, Emerton. Why?

• Predicted by mod ℓ analogue of Arthur's conjectures.

 $H_{(c)}^{i}(X_{\mathcal{K}}(\mathbb{C}),\mathbb{F}_{\ell})_{\mathfrak{m}}\neq 0 \text{ only if } i=d:=\dim_{E}X_{\mathcal{K}}.$

This is conjectured by Calegari-Geraghty, Emerton. Why?

- Predicted by mod ℓ analogue of Arthur's conjectures.
- It holds true in low-dimensional cases. Partial results of Lan–Suh, Emerton–Gee, Shin, Boyer.

 $H_{(c)}^{i}(X_{\mathcal{K}}(\mathbb{C}),\mathbb{F}_{\ell})_{\mathfrak{m}}\neq 0 \text{ only if } i=d:=\dim_{E}X_{\mathcal{K}}.$

This is conjectured by Calegari–Geraghty, Emerton. Why?

- Predicted by mod ℓ analogue of Arthur's conjectures.
- It holds true in low-dimensional cases. Partial results of Lan–Suh, Emerton–Gee, Shin, Boyer.

What is it good for?

- Taylor–Wiles patching.
- For modular curves, used to establish the compatibility with *p*-adic local Langlands (*l* = *p*).
- Useful in studying Bloch-Kato conjecture.

$$\widetilde{H}^{i}_{(c)}(K^{p}N_{0},\mathbb{F}_{p}):=\varinjlim_{N_{0}\subseteq K_{p}}H^{i}_{(c)}(X_{K^{p}K_{p}}(\mathbb{C}),\mathbb{F}_{p}).$$

$$\widetilde{H}^{i}_{(c)}(K^{p}N_{0},\mathbb{F}_{p}):=\varinjlim_{N_{0}\subseteq K_{p}}H^{i}_{(c)}(X_{K^{p}K_{p}}(\mathbb{C}),\mathbb{F}_{p}).$$

• For $N_0 = \{1\}$, we obtain Emerton's completed cohomology.

$$\widetilde{H}^{i}_{(c)}(K^{p}N_{0},\mathbb{F}_{p}):=\varinjlim_{N_{0}\subseteq K_{p}}H^{i}_{(c)}(X_{K^{p}K_{p}}(\mathbb{C}),\mathbb{F}_{p}).$$

- For $N_0 = \{1\}$, we obtain Emerton's completed cohomology.
- For G_{Q_p} split, N unipotent radical of B ⊂ G_{Q_p}, N₀ = N(Z_p), this leads to Hida's ordinary completed cohomology.

$$\widetilde{H}^{i}_{(c)}(K^{p}N_{0},\mathbb{F}_{p}):=\varinjlim_{N_{0}\subseteq K_{p}}H^{i}_{(c)}(X_{K^{p}K_{p}}(\mathbb{C}),\mathbb{F}_{p}).$$

- For $N_0 = \{1\}$, we obtain Emerton's completed cohomology.
- For G_{Q_p} split, N unipotent radical of B ⊂ G_{Q_p}, N₀ = N(Z_p), this leads to Hida's ordinary completed cohomology.

We expect vanishing of \widetilde{H}_{c}^{i} whenever i > d.

$$\widetilde{H}^{i}_{(c)}(K^{p}N_{0},\mathbb{F}_{p}):=\varinjlim_{N_{0}\subseteq K_{p}}H^{i}_{(c)}(X_{K^{p}K_{p}}(\mathbb{C}),\mathbb{F}_{p}).$$

- For $N_0 = \{1\}$, we obtain Emerton's completed cohomology.
- For G_{Q_p} split, N unipotent radical of B ⊂ G_{Q_p}, N₀ = N(Z_p), this leads to Hida's ordinary completed cohomology.

We expect vanishing of \widetilde{H}_{c}^{i} whenever i > d.

For $N_0 = \{1\}$, we also expect vanishing of \widetilde{H}^i whenever i > d. Calegari–Emerton conjecture, motivated by heuristics from *p*-adic Langlands programme. Choose a rational prime p, and a prime $p \mid p$ of E. Set

$$\mathcal{X}_{K}^{*} := (X_{K}^{*} \times_{E} E_{\mathfrak{p}})^{\mathrm{ad}}$$

Choose a rational prime p, and a prime $p \mid p$ of E. Set

$$\mathcal{X}_{K}^{*} := \left(X_{K}^{*} \times_{E} E_{\mathfrak{p}}\right)^{\mathrm{ad}}.$$

Let μ be the Hodge cocharacter of the Shimura datum. This determines a parabolic subgroup $P_{\mu} \subset G_E$. Set

$$\mathscr{F}\ell := \left(\left(\mathsf{G}_{\mathsf{E}}/\mathsf{P}_{\mu} \right) \times_{\mathsf{E}} \mathsf{E}_{\mathfrak{p}} \right)^{\mathrm{ad}}$$

Choose a rational prime p, and a prime $p \mid p$ of E. Set

$$\mathcal{X}_{K}^{*} := \left(X_{K}^{*} imes_{E} E_{\mathfrak{p}}
ight)^{\mathrm{ad}}$$

Let μ be the Hodge cocharacter of the Shimura datum. This determines a parabolic subgroup $P_{\mu} \subset G_E$. Set

$$\mathscr{F}\ell := \left(\left(\operatorname{\mathsf{G}}_{\operatorname{\mathsf{E}}}/\operatorname{\mathsf{P}}_{\mu}\right) \times_{\operatorname{\mathsf{E}}} \operatorname{\mathsf{E}}_{\operatorname{\mathfrak{p}}}\right)^{\operatorname{ad}}$$

Theorem 1 (Scholze, C-Scholze)

There exists a perfectoid space $\mathcal{X}_{K^p}^* = \varprojlim_{K_p} \mathcal{X}_{K^pK_p}^*$ and a morphism of adic spaces

$$\pi_{\mathrm{HT}}:\mathcal{X}^*_{K^p}\to\mathscr{F}\ell$$

• $\pi_{\rm HT}$ measures the relative position of the Hodge–Tate filtration. For the modular curve, we have:

 $x \in \mathcal{X}_{K^p}(\mathcal{C}, \mathcal{O}_{\mathcal{C}}) \leftrightarrow (\mathcal{E}, lpha : \mathcal{T}_p \mathcal{E} \simeq \mathbb{Z}_p^2) \mapsto \mathrm{Lie}\mathcal{E}(1) \subset \mathcal{T}_p \mathcal{E} \otimes_{\mathbb{Z}_p} \mathcal{C} \overset{lpha}{\simeq} \mathcal{C}^2.$

• $\pi_{\rm HT}$ measures the relative position of the Hodge–Tate filtration. For the modular curve, we have:

$$x \in \mathcal{X}_{\mathcal{K}^p}(\mathcal{C}, \mathcal{O}_{\mathcal{C}}) \leftrightarrow (\mathcal{E}, lpha : \mathcal{T}_p \mathcal{E} \simeq \mathbb{Z}_p^2) \mapsto \mathrm{Lie} \mathcal{E}(1) \subset \mathcal{T}_p \mathcal{E} \otimes_{\mathbb{Z}_p} \mathcal{C} \stackrel{lpha}{\simeq} \mathcal{C}^2.$$

• $\pi_{\mathrm{HT}} : \mathcal{X}^*_{\mathcal{K}^p} \to \mathscr{F}\ell$ is \mathbb{T} - and $G(\mathbb{Q}_p)$ -equivariant.

• $\pi_{\rm HT}$ measures the relative position of the Hodge–Tate filtration. For the modular curve, we have:

$$\mathbf{X} \in \mathcal{X}_{\mathcal{K}^p}(\mathcal{C}, \mathcal{O}_{\mathcal{C}}) \leftrightarrow (\mathcal{E}, lpha: \mathcal{T}_p \mathcal{E} \simeq \mathbb{Z}_p^2) \mapsto \mathrm{Lie} \mathcal{E}(1) \subset \mathcal{T}_p \mathcal{E} \otimes_{\mathbb{Z}_p} \mathcal{C} \stackrel{lpha}{\simeq} \mathcal{C}^2.$$

• $\pi_{\mathrm{HT}} : \mathcal{X}^*_{\mathcal{K}^p} \to \mathscr{F}\ell$ is \mathbb{T} - and $G(\mathbb{Q}_p)$ -equivariant.

• $\pi_{\rm HT}$ is "affinoid": there exists an open cover of $\mathscr{F}\ell$ by affinoid U_i such that each $\pi_{\rm HT}^{-1}(U_i)$ is affinoid perfectoid.

If (G, X) is a Shimura datum of abelian type, then

$$\widetilde{H}^{i}_{(c)}(K^{p},\mathbb{F}_{p})=0$$
 whenever $i>d$.

This is a theorem of Scholze and Hansen–Johansson. The case of $\widetilde{H}^{i}_{c}(K^{p}, \mathbb{F}_{p})$ is based on purely geometric techniques.

If (G, X) is a Shimura datum of abelian type, then

$$\widetilde{H}^{i}_{(c)}(K^{p},\mathbb{F}_{p})=0$$
 whenever $i>d$.

This is a theorem of Scholze and Hansen–Johansson. The case of $\widetilde{H}^{i}_{c}(K^{p}, \mathbb{F}_{p})$ is based on purely geometric techniques.

Theorem 2 (C–Gulotta–Johansson + Hsu–Mocz–Reinecke–Shih)

Assume that (G, X) is a Shimura datum of Hodge type, and $G_{\mathbb{Q}_p}$ is split. Let $N_0 := N(\mathbb{Z}_p)$. Then

 $\widetilde{H}^i_c(K^p N_0, \mathbb{F}_p) = 0$ whenever i > d.

• *p*-adic Hodge theory:

$$\mathsf{R}\Gamma_{\mathrm{et},c}\left(\mathcal{X}_{K^{p}N_{0}},\mathbb{F}_{p}
ight)\otimes_{\mathbb{F}_{p}}\mathcal{O}_{C}/p\overset{a}{\simeq}\mathsf{R}\Gamma_{\mathrm{et}}\left(\mathcal{X}_{K^{p}N_{0}}^{*},\mathcal{I}^{+}/p
ight),$$

where $\mathcal{I}^+ \subseteq \mathcal{O}^+$ is the ideal of sections that vanish at the boundary.

• *p*-adic Hodge theory:

$$\mathsf{R}\Gamma_{\mathrm{et},c}\left(\mathcal{X}_{K^{p}N_{0}},\mathbb{F}_{p}
ight)\otimes_{\mathbb{F}_{p}}\mathcal{O}_{C}/p\overset{a}{\simeq}\mathsf{R}\Gamma_{\mathrm{et}}\left(\mathcal{X}_{K^{p}N_{0}}^{*},\mathcal{I}^{+}/p
ight),$$

where $\mathcal{I}^+ \subseteq \mathcal{O}^+$ is the ideal of sections that vanish at the boundary.

• The Bruhat stratification into $B(\mathbb{Q}_p)$ -orbits

$$\mathscr{F}\ell = \bigsqcup_{w \in W/W_{P_{\mu}}} \mathscr{F}\ell^{w},$$

which descends to $\mathscr{F}\ell/N_0$.

• *p*-adic Hodge theory:

$$\mathsf{R}\Gamma_{\mathrm{et},c}\left(\mathcal{X}_{K^{p}N_{0}},\mathbb{F}_{p}
ight)\otimes_{\mathbb{F}_{p}}\mathcal{O}_{C}/p\overset{a}{\simeq}\mathsf{R}\Gamma_{\mathrm{et}}\left(\mathcal{X}_{K^{p}N_{0}}^{*},\mathcal{I}^{+}/p
ight),$$

where $\mathcal{I}^+ \subseteq \mathcal{O}^+$ is the ideal of sections that vanish at the boundary.

• The Bruhat stratification into $B(\mathbb{Q}_p)$ -orbits

$$\mathscr{F}\ell = \bigsqcup_{w \in W/W_{P_{\mu}}} \mathscr{F}\ell^{w},$$

which descends to $\mathscr{F}\ell/N_0$.

• By quantifying when different subsets of $(\mathcal{X}_{K}^{*})_{K}$ become perfectoid, we show that the cohomological amplitude of $R\pi_{\mathrm{HT}/N_{0},*}\mathcal{I}^{+a}/p$ restricted to $\mathscr{F}\ell^{w}/N_{0}$ lies in $[0, d - \dim \mathscr{F}\ell^{w}]$.

For the modular curve, the geometry of the reduction mod *p*:

$$\overline{X}^{*,\mathrm{ord}}_{\Gamma_0(p)} = \overline{X}^{*,\mathrm{anti}}_{\Gamma_0(p)} \sqcup \overline{X}^{*,\mathrm{can}}_{\Gamma_0(p)}$$

For the modular curve, the geometry of the reduction mod *p*:

$$\overline{X}^{*,\mathrm{ord}}_{\Gamma_0(p)} = \overline{X}^{*,\mathrm{anti}}_{\Gamma_0(p)} \sqcup \overline{X}^{*,\mathrm{can}}_{\Gamma_0(p)}$$

matches the Bruhat stratification:

$$\mathbb{P}^{1,\mathrm{ad}} = \mathbb{A}^{1,\mathrm{ad}} \sqcup \{\infty\}.$$

In particular, $\mathcal{X}_{K^{p}N_{0}}^{*,\mathrm{anti}}$ is perfectoid (Ludwig).

• Let $F = F^+ \cdot E$ be a CM field, with $F^+ \neq \mathbb{Q}$.

- Let $F = F^+ \cdot E$ be a CM field, with $F^+ \neq \mathbb{Q}$.
- Let G be a unitary group preserving \langle , \rangle on F^n , quasi-split at all finite places.

- Let $F = F^+ \cdot E$ be a CM field, with $F^+ \neq \mathbb{Q}$.
- Let G be a unitary group preserving \langle , \rangle on F^n , quasi-split at all finite places.
- Let m ⊂ T be in the support of Hⁱ_(c)(X_K, F_ℓ). Assume that p
 _m is generic: auxiliary condition at p ≠ ℓ, guarantees all lifts to characteristic 0 are principal series at p.

- Let $F = F^+ \cdot E$ be a CM field, with $F^+ \neq \mathbb{Q}$.
- Let G be a unitary group preserving \langle , \rangle on F^n , quasi-split at all finite places.
- Let m ⊂ T be in the support of Hⁱ_(c)(X_K, F_ℓ). Assume that p
 _m is generic: auxiliary condition at p ≠ ℓ, guarantees all lifts to characteristic 0 are principal series at p.

Theorem 3 (C-Scholze)

- If X_K is compact, then $H^i_{(c)}(X_K, \overline{\mathbb{F}}_\ell)_{\mathfrak{m}} = 0$ unless i = d.
- **2** If G is quasi-split and $length(\overline{\rho}_{\mathfrak{m}}) \leq 2$, then

$$H^i_c(X_K, \overline{\mathbb{F}}_\ell)_{\mathfrak{m}} = 0 ext{ unless } i \leq d,$$

$$H^i(X_{\mathcal{K}},\overline{\mathbb{F}}_\ell)_{\mathfrak{m}}=0 ext{ unless } i\geq d.$$

$$\mathscr{F}\ell = \sqcup_{b\in B(G,\mu)}\mathscr{F}\ell^{b}$$

and the identification of the fibers over $\mathscr{F}\ell^b$ with perfectoid Igusa varieties Ig^b (Mantovan product formula).

$$\mathscr{F}\ell = \sqcup_{b\in B(G,\mu)}\mathscr{F}\ell^b$$

and the identification of the fibers over $\mathscr{F}\ell^b$ with perfectoid Igusa varieties Ig^b (Mantovan product formula).

• The complexes $(R\pi_{\mathrm{HT}*}\mathbb{F}_{\ell})_{\mathfrak{m}}$ behave like perverse sheaves.

$$\mathscr{F}\ell = \sqcup_{b\in B(G,\mu)}\mathscr{F}\ell^{b}$$

and the identification of the fibers over $\mathscr{F}\ell^b$ with perfectoid Igusa varieties Ig^b (Mantovan product formula).

- The complexes $(R\pi_{\mathrm{HT}*}\mathbb{F}_{\ell})_{\mathfrak{m}}$ behave like perverse sheaves.
- Computation of $R\Gamma(\mathrm{Ig}^b, \mathbb{Q}_\ell)_{\mathfrak{m}}$ using trace formula (Shin).

$$\mathscr{F}\ell = \sqcup_{b\in B(G,\mu)}\mathscr{F}\ell^{b}$$

and the identification of the fibers over $\mathscr{F}\ell^b$ with perfectoid Igusa varieties Ig^b (Mantovan product formula).

- The complexes $(R\pi_{\mathrm{HT}*}\mathbb{F}_{\ell})_{\mathfrak{m}}$ behave like perverse sheaves.
- Computation of $R\Gamma(\mathrm{Ig}^b, \mathbb{Q}_\ell)_{\mathfrak{m}}$ using trace formula (Shin).

Remark

Boyer proves a stronger result for Shimura varieties of *Harris–Taylor type*, going beyond the generic case. There is also forthcoming work of Koshikawa.

For the modular curve, we have $B(G, \mu) = {\text{ord, ss}}$:

Let D/Q be the quaternion algebra ramified at p,∞. The fibers Ig^{ss} of π_{HT} over Ω can be identified with Shimura sets for D[×] (Howe).

For the modular curve, we have $B(G, \mu) = {\text{ord, ss}}$:

- Let D/Q be the quaternion algebra ramified at p,∞. The fibers Ig^{ss} of π_{HT} over Ω can be identified with Shimura sets for D[×] (Howe).
- If π is an automorphic representation of GL₂(A) such that π^p_f contributes to RΓ(Ig^{ss}, Q_ℓ), then π_p cannot be a principal series representation.

Theorem 4 (C-Tamiozzo, in progress)

Let $\ell \geq 3$ and $\mathfrak{m} \subset \mathbb{T}$ be in the support of $H^*_{(c)}(X_K, \mathbb{F}_\ell)$ such that $\operatorname{Im}(\overline{\rho}_\mathfrak{m}) \supset \operatorname{SL}_2(\mathbb{F}_\ell)$. Then

$$H^i_{(c)}(X_K,\mathbb{F}_\ell)_{\mathfrak{m}}=0 ext{ unless } i=d.$$

Theorem 4 (C-Tamiozzo, in progress)

Let $\ell \geq 3$ and $\mathfrak{m} \subset \mathbb{T}$ be in the support of $H^*_{(c)}(X_K, \mathbb{F}_\ell)$ such that $\operatorname{Im}(\overline{\rho}_\mathfrak{m}) \supset \operatorname{SL}_2(\mathbb{F}_\ell)$. Then

$$H^{i}_{(c)}(X_{K},\mathbb{F}_{\ell})_{\mathfrak{m}}=0$$
 unless $i=d$.

• This strengthens results of Dimitrov in the Fontaine-Laffaille case.

Theorem 4 (C-Tamiozzo, in progress)

Let $\ell \geq 3$ and $\mathfrak{m} \subset \mathbb{T}$ be in the support of $H^*_{(c)}(X_K, \mathbb{F}_\ell)$ such that $\operatorname{Im}(\overline{\rho}_\mathfrak{m}) \supset \operatorname{SL}_2(\mathbb{F}_\ell)$. Then

$$H^i_{(c)}(X_K,\mathbb{F}_\ell)_{\mathfrak{m}}=0 ext{ unless } i=d.$$

- This strengthens results of Dimitrov in the Fontaine-Laffaille case.
- Key idea: work with an auxillary prime *p* that splits completely in *F*. Replace the direct computation of Igusa cohomology with the geometric Jacquet–Langlands functoriality established by Tian–Xiao.