SECOND PRO-p-IWAHORI COHOMOLOGY FOR SL,

KAROL KOZIOL

0.1. Notation. Let F' denote a finite extension of Q,, with ring of integers O, maximal ideal p , uniformizer
w and residue field kg of size ¢ = p/. We suppose throughout that p > 2e(F/Qyp) + 1. We fix an embedding
kr — Fp, and always view kp as a subfield of F,, via this injection. For an element z € kr, we let [z] € Op
denote its Teichmiiller lift; conversely, for y € Op, we let § € kr denote its reduction mod pp. Finally, we let
e denote the composition

Nr/q, r—xz|z|p

FX Q) Z —»F} ——TF,.

Let G := SLo(F), and let I; denote the “upper-triangular mod p” pro-p-Iwahori subgroup. The assumption
p > 2e(F/Q,) + 1 guarantees that I is torsion-free (see [Laz65, §I11.3.2.7]). Let T denote the diagonal
maximal torus, with maximal compact subgroup 7Ty and maximal pro-p subgroup 77. We let B denote the

upper triangular Borel subgroup; then the unique positive root of 7' with respect to B is given by the character

o ((O 0)) e
=3 3

(and define u_, (z) as the analogous lower triangular unipotent matrix).
Let a* denote the simple affine root (—c,1). We have the following elements of Ng(7T'), whose images in
the affine Weyl group give a set of Coxeter generators:

—~ (0 1 d 55— 0 —w !
Sa = | _y | and 5o+ = | 0 .

Recall that the pro-p-Iwahori-Hecke algebra H of G is generated by operators Ts=, T5— and T} for t € Ty (or,

equivalently, by Ts>, Ts—~ and T,v(,) for x € OF, where a¥(z) = (g mgl )), subject to quadratic relations and

braid relations. The purpose of this note is to compute the action of this algebra on some of the cohomology
spaces H'(I1,F)).

We let u,, : FF — G denote the map

0.2. Simple H-modules. We recall the classification of simple right #-modules. Any simple right H-module
is isomorphic to one of the modules below, and there are no isomorphisms between any modules with distinct
parameters.

e Trivial character: let yi,, denote the one-dimensional module defined by the character
To; — 0, Tsz+—0, Toveyr—1,
where z € OF.
e Sign character: let xgion denote the one-dimensional module defined by the character
Toyr— =1, Tsz— =1, Tove)—1,
where z € OF:.

e Principal series: let x : T —> F; denote a smooth character. We have a process of parabolic

induction, denoted IndzT (x), which gives a two-dimensional right H-module. Explicitly, if we let
{v1,v2} denote a basis, then the actions of the generators are given by

v -Tgr = g v Tsy = —Oyjp, 102
v Iz = _5X|T‘i711)1 v Tsz = X((w(Il 9))u
v-Ty = x@#) v ve Ty = x(t)va

When x # 1, the module IndZT (x) is simple.
1
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e Supersingular modules: let 0 < i < g — 1, and let ss; denote the one-dimensional module defined
by the character
—i

Tg; ? _5i,q—17 Ts/a\* ? _61',07 Tav(:c) —x

where z € OF.

For future reference, we also note that for any right H-module m, we may form the dual space m"Y, equipped
with a right action given by

(f - Tg)(m) = f(m - Ty-1),

where m € m, f € m". For the simple modules above, we have
Xiriv = Xorivs Xdign = Xsign:  Indj, ()Y 2 Indjg, (1)) = Indg, (x),
o 55; ?fi:()‘,qfl,
5Sq—1—i fo<i< q—1.
(For the case of irreducible parabolic induction, see [Abel9, Thm. 4.9].)

0.3. Cohomology — preliminary. We begin to consider cohomology spaces. By unwinding definitions, we
have

(H®) HO(I1,Fp) & Xeriv-
Consequently, by [Koz18, Thm. 7.1], we get
(H*P) A0 (11, Fp) 2 xariv-

Recall from [Koz18, Lem. 5.1] that

L = ua(Op/pr) ® u_al(pr/ph),
so that

(1) Hl(Il?FP) = Spa‘n{na,rv na*,r}Ogrgf—la

where
1+ wa b — % and 1+ wa b o
Mo, we 1+ wd - a Mo, we 1+ wd =

(a,b,c,d € Op). By [Koz18, Thm. 6.4], as an H-module we have

Ind%T (eq, 0 @) it F=Qp,
DI, 5500 B 554 1_0pr if F # Q.
Consequently, by [Koz18, Thm. 7.2], we have

(H') H'(11,F,) %{

(HoP—1) @I, ) In‘ﬁ{ (eq, © @) ifE=Q,,
D) s52p @ 85q_1-2pr if F # Q.

To proceed further, we examine I in relation to other subgroups.

0.4. Cohomology — congruence subgroups. We let K and K* denote the maximal compact subgroups
associated to the reflections s, and s,=, respectively, so that

* OF p]_?l
K = SL2(OF) and K" = NnG.
pr Of
We let K7 and K7 denote their first congruence subgroups, so that

_(1+pr pr «_(1+pr Op
b (2 Yoo e m (M9 Yo

We have Ky = I; N53015, " and K = I, N5, L1547 .
We do the calculations for K;; the calculations for K7 follow by conjugation. One can compute in a
straightforward way that
K = u_o(pr/p}) ® T1/To ® ua(pr/pi)-
Therefore,
H'(K1,F,) = span{nu,r, Nd,rs Mrto<r<s—1,
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where

1+ wa wb _ 1+ wa wb T 1+ wa wb T
M, we l4+wd)) =" > T we l4+wd)) =% M we l+wd)) =€
(a,b,c,d € Op). We also have
Hl(KT>Fp) = Span{nz,rﬂ 77:;,7“7 nl*,r}OSTSf*h

where the starred homomorphisms are defined similarly.
The group K acts by conjugation on H' (K, F »), and we have

(2) YKy, T, @ Sym?(F

as K-representations (and similarly for K*; see [BP12, Prop. 5.1]). B

Finally, if F' is unramified over QQ,,, then the dimension of Hl(K 1,Fp) is equal to the dimension of K, as a
p-adic manifold, and therefore K is uniform (likewise for K; see [KS14, Prop. 1.10, Rmk. 1.11]). We then
obtain

H(Ky,Fy) = N\ H'(K:,F,
([SW00, Thm. 5.1.5]).

0.5. Cohomology — quotients. The quotients I1/K; and I; /K7 are both isomorphic to Op/pp = IE‘]J; as
abelian groups. By the Kiinneth formula, we have

(3) Hi(Il/Kth) = @ Hil(Fpan)®"'®Hif(]Fp7Fp)~
’Ll++1f:Z

We can write some low-degree terms explicitly. Since H'(I;/K;,F,) = Hom(I,/K;,F,), we have

(4) H'(1/K1,Fp) = span{7, Jo<r<f—1,

where _
_ 1 b 7
(o 1) -7

HY (1 /KT, Fy) = span{7; o<r< g1,
where 7 are defined similarly (on lower-triangular matrices).
Given 0 <7 < s < f — 1, we can form the cup products 7, — 7, € H2(Il/K1,Fp). It is easy to check
7, — T, # 0, and that the set

(b€ Op). We write

{ﬁr ~ ﬁs}OST<S§f—1
is linearly independent. The span of this set makes up the “H! @ H' parts” of (3) above for n = 2 (but the
image of the element 7j,. ~— 7, in the right-hand side of (3) is not a pure tensor).
To get the “H? parts” of (3) for n = 2 above, we use the following construction. Consider the short exact
sequence of trivial [;/Kj-modules

0 — Z/pZ = pZ/p*7. — L/p* 7. — L./ pZ — 0,

and the associated long exact sequence of cohomology, with connecting homomorphism /3 (the first row with
H"’s is exact):

0 — H'(I,/K,,F,) — HY(I,/K1,Z/p*Z) — H' (I, /K1, F,) BN H?(I, /K1, F))

Since I; /K1 annihilated by p, any homomorphism I /K; — Z/p*Z factors through pZ/p*Z, and consequently
the first non-zero map is an isomorphism. Therefore, § is an injection. We may extend it linearly to
B:HY(I,/K,,F,) — H?(I,/K1,F,). By dimension-counting, we conclude

(5) H?(I, /K1, F,) = span{7, — 70,, B(M) o<res<s—1,0<t<f—1-

0.6. Second cohomology of I; — lower bound.
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0.6.1. Inflations. Combining (4), (1), and (2), we get

dimg (HY( /K1, Fp)) = f,
dimg (H'(1,F,)) = 2,
dimﬁp (Hl(Kth)h/Kl) — f

The Hochschild—Serre spectral sequence gives a five-term exact sequence
0 — HY(I,/K,,F,) — H'(I},F,) — H'(K,,F,)"/% — H*(I,/K,,F,) — H2(I,,F,),

and the dimension calculations imply that the transgression map Hl(Kl,R,)Il/K1 — HQ(Il/Kl,R,) is 0.
Therefore, the inflation map
inff! o« H2(L /Ky, Fp) — HA(1, )
is injective (and likewise for the group K7). Moreover, once can check (using, e.g., the eigenvalues of the
conjugation action of the elements (¢9) € GL2(OF), a € OF) that the images of infﬁ/K1 and infﬁ/K*
1

intersect trivially. Therefore, we get an inclusion

(6) infl! . (H*(I1/K1,Fp)) @ inf}!

I/K; (H2(Il/KikﬂFP)) CH2(II7F;D)~

/KT

We simplify the expression (6). Let 8 : H'(I,F,) «— H?*(I;,F,) denote the Bockstein map of I; (since
I#? is annihilated by p, 3 is injegtive). Since 3 is defined as a differential, [NSWO08, Prop. 1.5.2] implies we
have a commutative diagram of IF,-vector spaces:

_ ianl _
H'(I,/K,,F,) — HY(1,,F,)

T

_ mfI1
H%(I,/K,,F,) —5 H*(1,,F,)

Thus, applying infﬁ /K, O (5) gives

el 2 = _ el = = - ely —
infll ., (H (/K1 Fp)) = span{lnfh/Kl(mvﬂs)v mfh/Kl(5(%))}Ogmgflyog@t1

ol _ o oT _ el _
= span{mfli/Kl(nT) N mf[i/Kl(nS)’ 5(lnfli/Kl(Ut))}0<T<s<f71 0<t<f-1
= Sspan {na,r ~ Na,ss 6(na>t)}O§T<s§f—1,0§t§f—1

In particular, the injectivity of the inflation maps implies that the above spanning set is linearly independent.
Proceeding likewise with K7, we conclude that the following set is linearly independent:

{na,r ~ Ta,ss B(na,t)v Nax,r ~ Ta*,s, B(na*7t)}0§r<s§f71,0§t§ffl
0.6.2. More cup products. We now consider cup products of the form 74, — 7+ s for 0 <7, s < f —1.
Lemma 0.1. We have 1q,r ~ Nax,s 7 0 if and only if r # s.

Proof. Suppose that there exists a 1-cochain ¢ : [y — Fp such that dy) = 14, — 14+ s; that is, suppose we
have

(7) P(h1) +Y(ha) = P(hih2) = Nar(h1)Nax s (ha)

for hi, hy € I;. The right-hand side is 0 if h;y € B~ NI} or hy € BN I;. In particular, v is a homomorphism
when restricted to BN I; or B~ N I;. Thus, we have

(O
(L) -

where v, \ € Fp, b,c € Op, and 0 < ¢,m < f — 1. Therefore, by the Iwahori decomposition, we have

(01 20) = (ot DO i)
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= w((mc(l—!—lwa)l ?))*w((Hom (1+ia)1)> )
* (e smms 1)+ (57 arman)) ool 7))

(8) — 2+ (oaY)1 +wa)+ b’
Next, suppose hy = (3 ¢) and he = (L ¢). Using (8), the left-hand-side of (7) becomes

0 ((é ‘f))w ((; ?)) ) ((1 *wm i‘)) = ua”m—M—()\ + (o)1 + wa) + yapm) = —(¢poa")(1+wa),
while the right-hand side becomes
e ((05)) (( )=
(

On the other hand, taking hy = ({ 1) and he = (2, 9), the left-hand side of (7) becomes

¥ ((é }))w ((wa ?))—w ((1 o )3 = vx@ - (3@ + (o a¥)(1 + wa) + ) = ~(goa") (1+wa),

while the right-hand side becomes

e (o 3)) e (G ) =

@ = —(poa)1+wa)=a",

=

Collecting terms, we arrive at

which forces r = s.
Conversely, if 7 = s, then the function

1+ wa b L
1/’(( we 1—|—wd)> =—a

satisfies the equation (7) for all hq, hy € Iy, which implies 7q,» — Mo = 0. O

The action on 1q,, — Na=,s of Tyv(y) = a” (z);! for z € OF is given by the scalar 72" =" 'We therefore
see that the set {nq,, — 7o s Jo<rs<f—1 is linearly independent, and its span intersects
Il 2 v 34 2 * T
1nf11/K (H*(I,/K1,Fp)) @ 1nf11/K* (H*(I, /K7, Fy))
trivially. Thus, the following set of vectors is linearly independent:

9) {na,r ~ Na,ss ﬁ(na,t)v Nax = Na* s, ﬁ(na*,t)}ogr<5§f,1’o§t§f,1 U {na,r ~ na*,s}ogr¢‘q§f*1
In particular, we obtain the bound

(10) dimg (H*(I,F,)) > 2%

0.7. Hecke action. Finally, we calculate the action of 7 on spang {(9)}.

Note first that the span of the elements ($(1,.¢) and B(1a- ;) is simply the image of g : H'(I1,F,) —
HQ(Il,E,). Since [ is defined as a differential corresponding to a short exact sequence of I1-modules, it
commutes with restriction, corestriction, conjugation, and inflation ([NSWO08, Prop. 1.5.2]). Recall that if
¢ € H'(I,F,), then

o-Ty= corﬁmg_lhg ogilo resﬁﬂghg_l(gp).

Thus, we see that (3 is in fact H-equivariant. In particular, we have S(H'(I;,F,)) = H'(I;,F,) as right
H-modules, and we know the structure of the latter space (it is entirely supersingular as soon as F # Q,).
Hence,

Ind}; (eq, o @) if F=Q,,

11) spang ﬂ(na,t 76(770*, ) — = — .
( Fp { ) t }ogtgf 1 @i‘:é 580, B 8541 _opr if F # @p'
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Next, we assume f > 2. By [NSWO08, Prop. 1.5.3], the cup product commutes with restriction, conjugation,
and inflation (but not corestriction). Consequently, if p € H'(I1,F,) and v € H’(I;,F,), we have

I I — I
(90 ~ ¢) Ty = Corliﬁgﬂhg (g* © res]iﬂghg 1(0) — 9. o resliﬁghg’l(w)) ’

We note that
I I
res[imggllggfl(nmr) =resg (Na,r) =0
and
I I
res Iiﬁs Savl15,+ 1 (7701*,7‘) = res[éf (T]a*ﬂ') = 07

which gives
(12) (77a r—p) - T, = =0, (o~ 7704*,5) T5= =0.

The equation (12) implies that each 74, — 7a=,s gives a one-dimensional supersingular H-module: the
operators Tg; and Ts= act by 0, while T,,v(,) acts by 720" 20" Thus,

(13) Spa'nﬁp {na,r ~ na*,s}OS'r#sSffl = @ 55 _2pr42ps],
0<r#s<f-1
where [i] denotes the unique element of {0,...,q — 2} congruent to ¢ modulo ¢ — 1.

Finally, we consider the H-module generated by 14, “— 1a,s-
Lemma 0.2. If f > 2, we have
(14)
Ind} (eq,, @) if F'=Qye,

spang {770477’ ~ Na,ss TNaxr 7704*,5}0< <s<f-1— .
4 Sr<s<f @ogmsgfq §6q_1_opr—opr D 86opriops  if F # Q2.

Proof. We have (a,r — 7a,s) - Tz = 0, and the action of T,v(,) is given by the scalar z%*" 2", Therefore it
suffices to calculate the action of T5—. We have

e ) Tz = o (57 onf ) = (557 ol )
—1 *
= COTK? ((Sa ) nuT \/(Sa* )*ﬁuﬁ)

= corg ((=ni,) — (=ni'y)
= cor%* (771*,r N 771*5) .

)

Given h = ('t=e ngﬂd) € I, we define r(h) := u_q(w[e]), so that hr(h)~! € K;. Unwinding definitions

wcC
in [NSWO08], we see that an inhomogenous 2-cocycle representing corﬁél* (n

(h1,ha) — Yy (u—a(@ (@) har(u—a(@[])h) ™)

*
Ir

— ny,) is given by

z€kp

s (r(u—a(@[z)h)hy  uo(@(2]) ™ - usa(@[2])hahor (u—o (@[a]) hiha) )
= > iy (ua(@@)hir(u-a(@lz)hn) ") -1 (r(u-a(@[z])n)hor(u-a(w[e])hiha) ")
rekp

We evaluate some terms in this sum. Note first that

u—o(@z]) i (u—o(@la])hy) ™" =

( 14+ w(a; — bz + 7)) b1 )
w(la] + e — [z +a)) + @ (afz] — difw + @] = bifa® +Era]) 1+ w(di + bifz])

r(u—a(@[z])hy)hor(u_o(@[z])hihe) ™" =

( 1+ w(ag — balz + o1 + ) ba )
w(lz+a]+e—[r+a+a)) + @ (ar+ea] —dfz+e+) —blr+allr+a+c)) 1+ w(d +bofz+e1))

Thus, the sum above becomes
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r

3 (wl ([x] +e1— [z +G]) +arz — di(z +e1) — by (2? +C15U)>p
sckp

s

-(w—l([x+c1]+c2— [m+a+6}) +a2(a:+cl)—d2(x+c1+c2)—bz(:c+c1)(x+c1+c2)>p :

We now analyze some Witt vector calculations in greater depth. Suppose z € kr and ¢ € Op. We have

P
Z _ (i) p—1:k/PE(P—k)/p

k=1

2] +c—[z+T =(c—=[¢]) +p +...,

where the ellipsis denote higher order terms in the Witt vector expansion. In particular, we see that if F//Q,
is ramified, then pcw~! € pr, and the sum above reduces to

(s

g;p (w1 (e1 — [e1]) + iz — (o + 1) — Br(e? +m))p

s

(= (e~ 1) + o+ 70) - Tlo 7+ 7) - B 4 o)

Be expanding, we are left with a sum of terms of the form » , axdrP 9" where 6,08, € {0,1,2}. Since
p > 5, we have §,p" + d,p° < p/ — 1, and therefore all such terms must vanish.

We may therefore assume that F//Q, is unramified (and take w = p to be our uniformizer). The above
sum now becomes

Pl
> (W_IGH—WQD-%E:—<i>ﬂ*$wﬂn@_“m+whx—dﬂx+wn)—bﬂw2+cwﬁ>
k=1

z€kp

r

p

=1 .
~(w1 (cQ - [@}) +y - (i)pl(:c + )t PGP s @ @) —da(r T+ @) — bz +E)(x +cl+c2)>
k=1

Expanding once again, we find a sum of terms of the form ), axdrP 9" where now 6,, 6, € {0,1,2,1/p,2/p, ..., (p—

1)/p}. In order for such a sum to be nonzero, we must have §,p" +8;p° = 0 (mod pf —1) and (4,,6,) # (0,0).
Examining possibilities, we see that if the sum is nonzero, then we must have f = 2,6, = 65 = (p — 1)/p.
(This also forces r = 0,s = 1.) In this case, the sum above becomes

I o ,
3 <pf 1>p1x<p1>/pcll/p <( P 1)p1x<p1>/p621/p> — Y e

r€kp r€kp
= —a’a
= —(Nar1 ~ Nax0)(h1, ha).
Combining these calculations, we conclude
_(na*,l ~ 7704*,0) = Nax*,0 ~ Na*,1 it FF= Qan
0 if F# Qpe.

Further, conjugating by (2 }) shows that we have

(na,r ~ na,S) Ts= = {

(77* ~ Mo )_TA:{UQ,OVT]a,l ifF:Qp2,

0 if F Q.
O

Remark 0.3. A similar calculation with cup products shows that when F' = Qp ¢, the element 1, 0 ~ 70,1 —
.~ Ta.f—1 generates an H-submodule of HY (I}, TF,) isomorphic to Ind%T (eq,; ).
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Combining equations (11), (13), and (14), we arrive at

Ind} (eq, © @) if F=Q,,
569 @ 66,3 if f=1,F#Q,,
(582 @ 58,25 D 589, B 86,21 _2p) D (8522 B §5p2_1_2p42)
(15)  spang {(9)} = EBInd%T (g, o) if F'=Qpe,
-1
(@fzo S52pr D 85g—1-2pr | D (@09-7&32)“—1 55[—2pT+2pS])
& <®O§r<s§f—1 §5q_1—2pr—2pr B S52pryops if f2>2,F# Qpe.
0.8. Second cohomology of I; — upper bound. Our next task will be to use a spectral sequence to try

to get an upper bound on the dimension of H? (I1,F,). For simplicity, we assume that F' is unramified over
Q, and take @ = p to be our uniformizer.
We define a function w : I; — Ry U {oo} as follows:

1+ pa b . 1 1
w (( pe 1 +pd>) := min {valp(a) +1, wval,(b) + 3 val,(c) + 3 val,(d) + 1
By [LS24, Prop. 3.5], the function w defines a p-valuation on I;. Furthermore, by choosing a basis {x, }o<r<f—1
of OF over Z,, we see that an ordered basis of I; is given by the elements

{ua(xr)a ufa(pr% av(exp(pr))}Ogrgf—l '

Let gr,,(I1) denote the graded group associated to I (and w), and let J := Lie, (1) := gr,,(I1) ®r,p] Fp
denote the Lie algebra of I; associated to w. Here, P denotes the operator which sends hly 1 to hPI; (,41)4-
The Lie algebra J has a Lie bracket induced by the commutator in I;. By decomposing with respect to field
embeddings, we have an isomorphism of Lie algebras

f-1
j = @ g’r;
r=0
where g, is a 3-dimensional Fp—Lie algebra with basis e,, f,, h, and bracket relations
[er»fr] = hy, [hraer] =0, [hr;fr] =0.

(The elements e, (resp., f, resp., h,.) are linear combinations of the elements u, (/) ®1 (resp., u_q(pz,)®1,

resp., a¥ (exp(pz, ) ©1).)
By [Sor21, Thm. 5.5], we have a convergent spectral sequence

B =H"(3,F,) = H'(1,F,)
Specializing to H? (I1,F,), we obtain
dimg  (H*(11,F,))

> dimg (BY)
i+j=2

Y dimg (EY)
i+j=2

(16) = > dimy (H?7(3,F,)).

1€Z

IN

It therefore suffices to understand
HY27(3,F,y) = A0 (' (C*(3.Fy))) = h* (&' (C*(3.Fy))) -
Here, C*(J,F,) denotes the Chevalley—Eilenberg complex. The grading on this complex is defined as follows.

e We endow F, with the grading which puts F, in degree 0.
e The Lie algebra J has a grading induced from the grading on gr,,(I;). We have

J = Jted?
— gri/2+ZZO (Il) ®]FP[P] Fp ® gri}+Zzo (Il) ®FP[P] Fp

= Spalg, {er, fr}ogrgfq © spang {hT}OS’rSffl'
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e For j > 0, the space /\% J is endowed with a grading as follows. Given homogeneous elements
P
Viy...,0, €7, we let deg(vr A ... Awg) = 25—1 deg(vg). We then set

Nt o= @t (AL7)

iE€EZL
@spanﬁp {v € /\?F J:deg(v) = z} .
i€Z P
¢ We endow Home ( /\% 3,F,) with a grading as follows:
i ; i =
Homg ( /\Fp j,Fp> = @Homm ( /\E J,]F,,)

= @ {f € Homﬁp ( % 3,15‘,,) : £ is homogeneous of degree z}
P

» j _
= @ Homg (gr ‘ (/\]F,, 3) ,IFP)
e The Chevalley-Eilenberg complex C*(J,F,) is defined by
0—F, -2 Hom= (Jﬁ)ﬂ)Homf /\23? 5, Homs /\BJF BN
p Fp »EP Fy Fp » P Fp Fp ' P

The differentials are defined as follows: we have J; = 0 and given j > 1 and f € Homg (/\%p 3,F,),

we have

Q) (XA X A AX ) = Y (D) (X0, XA X A AXGA AKX AL A X ).
1<a<b<j+1

e The differentials d; respect the grading on Homg ( /\%p 3,F,), and therefore induce a complex gr!(C*(J,F,))
given by

0 — gr* (Fp) RN Homg (er™"(3),F,) BEN Homg (gri (/\; 3) ,F,,) G5, Homg <gri </\; 3) ,IF,,) RN

p

Recall that we are interested in calculating h?(gré(C*(J,F,))). We first note that gr— (/\]F ) # 0 implies
1 = —2,—3, or —4. This gives

(17) dimg (H"*7'(3,F,)) = dimg_(h*(gr'(C*(3,F,)))) =0 if i & {~2,-3,—4}.

We examine the remaining cases in turn.

0.8.1. i = —2. In this case, we note that grQ(/\% J) =0, so that d3 = 0 in the complex gr=2(C*(J,F,)). 1

suffices to understand the image of d;. Suppose f € Homg (gr? (/\]F 3),F,) is in the image of d2. Then there

exists g € Homg_ (gr?(3),F,) satisfying Oog = £. In particular, if X AY € P AT = gr (/\E, 7J), then
FXAY) = (9:8)(X NY) = —g([X, Y]).

Thus, £ vanishes on e, Aes (r < s), fr A fs (r <s), and e, A fs (r # s). The space of such homomorphisms
is f-dimensional (being dual to the space spanned by e, A f,. (O r < f —1)), and therefore, we obtain

dlmﬁ (H 243, F )) _ d1mF (h2(gr_2 C*(3,F,)
= dime ( ( )) dlm]F im (aQ‘gr*2(C'(j,Fp))))
_ (¥
- ()

(18) = 2f% - 2f.
(Note that this quantity is 0 if f =1.)
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0.8.2. i = —3. In this case, we note that gr3(J) = 0, so that d» = 0 in the complex gr—3(C*(3,F,)). It
therefore suffices to compute the kernel of d5. If f lies in this kernel, and if X,Y,Z € J', then we have
XAY ANZeT AT AT =gr¥(A7,J) and
0=(BEXAYANZ)=—£([X,Y]ANZ)+£([X,Z]AY) - £([Y, Z] A X).
In particular, we obtain the following relation:
fler ANhs) = —f(les, fs] Aer)

= —f([es, er] A fs) + f([f57 er} A 65)

B 0 if r #£ s,

 \f(=hyNey) ifr=s.

Similarly, we have

0 if
f(fr/\hs): 1 7‘7&57
—f(h A fr) ifr=s.
Thus, f is determined by its values on the elements e, A b, and f. Ah,. (0 <r < f—1). We therefore obtain
dimg (H™°(3,F,)) = dimg (h*(gr>(C*(3,F,))))
= dimﬁp (ker (83\gr,2(c.(jfp))>>
(19) = 2f.

0.8.3. i = —4. As with the previous case, we have gr*(J) = 0, so that 9, = 0 in the complex gr=4(C*(3,F,)),
and it suffices to compute the kernel of 9s. If £ lies in the kernel, and if X € 3',Y € 3! and Z € 32, then we
have X AY A Z € gr4(/\%p J) and

0 = (OE)(XAYANZ)
= —f([X,)YINZ)+£(X,Z]"\Y) —£([Y,Z] A X)
“£([X,Y]AZ)
(we are using that [X, Z] = [Y, Z] = 0 since J? is central in J). As [J1,T3'] = 32, we see that £ vanishes on all

of 72N7?% = grd( /\%p J), and therefore is trivial. This implies that 03]y (ce (5 7)) 18 injective, and consequently

gré(
(20) dimg (H°(3,F,)) = dimg (h*(gr*(C*(3,Fp)))) = 0.

Combining equations (17), (18), (19), and (20), we obtain
_ . (6) o
dimg (H*(I1,Fp)) < ) dimg (H"*7/(3,F,)) = (2f* —2f) + 2f = 2/*.
i€z
Combining this with the lower bound (10) and equation (15) gives the following.
Theorem 0.4. Suppose p > 5 and F' is unramified over Q, of degree f. We then have dime (HQ(Il,E,)) =

2f2. Moreover, as a right H-module, we have

Ind} (eq, o @) if F'=Q,,
(552 ©885p2_3 D 862p O 55172—1—217) ® (55%—2 EBE5p"’—1—2p-~-2)
(H?) H2(I,,F,) & @IndzT (eq,. © @) if '=Qpe,
(EBZ;S S52pr D 55q7172pT> & (@09;@3%1 55[,2pr+2p5])
S5 (@0§r<s§f—1 55q—1-2pr—2pr D $52pr 4 2ps if f>3.

The theorem above also gives the structure of H3/ _2(1 1,Fp) by duality.
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