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0.1. Notation. Let F denote a finite extension of Qp, with ring of integers OF , maximal ideal pF , uniformizer
ϖ and residue field kF of size q = pf . We suppose throughout that p > 2e(F/Qp) + 1. We fix an embedding

kF ↪−→ Fp, and always view kF as a subfield of Fp via this injection. For an element x ∈ kF , we let [x] ∈ OF

denote its Teichmüller lift; conversely, for y ∈ OF , we let y ∈ kF denote its reduction mod pF . Finally, we let
εF denote the composition

F× NF/Qp−−−−→ Q×
p

x7→x|x|p−−−−−→ Z×
p −↠ F×

p ↪−→ F×
p .

Let G := SL2(F ), and let I1 denote the “upper-triangular mod p” pro-p-Iwahori subgroup. The assumption
p > 2e(F/Qp) + 1 guarantees that I1 is torsion-free (see [Laz65, §III.3.2.7]). Let T denote the diagonal
maximal torus, with maximal compact subgroup T0 and maximal pro-p subgroup T1. We let B denote the
upper triangular Borel subgroup; then the unique positive root of T with respect to B is given by the character

α

((
x 0
0 x−1

))
= x2.

We let uα : F −→ G denote the map

uα(x) =

(
1 x
0 1

)
(and define u−α(x) as the analogous lower triangular unipotent matrix).

Let α∗ denote the simple affine root (−α, 1). We have the following elements of NG(T ), whose images in
the affine Weyl group give a set of Coxeter generators:

ŝα :=

(
0 1
−1 0

)
and ŝα∗ :=

(
0 −ϖ−1

ϖ 0

)
.

Recall that the pro-p-Iwahori–Hecke algebraH ofG is generated by operators Tŝα , Tŝα∗ and Tt for t ∈ T0 (or,

equivalently, by Tŝα , Tŝα∗ and Tα∨(x) for x ∈ O×
F , where α

∨(x) =
(
x 0
0 x−1

)
), subject to quadratic relations and

braid relations. The purpose of this note is to compute the action of this algebra on some of the cohomology
spaces Hi(I1,Fp).

0.2. Simple H-modules. We recall the classification of simple right H-modules. Any simple right H-module
is isomorphic to one of the modules below, and there are no isomorphisms between any modules with distinct
parameters.

• Trivial character: let χtriv denote the one-dimensional module defined by the character

Tŝα 7−→ 0, Tŝα∗ 7−→ 0, Tα∨(x) 7−→ 1,

where x ∈ O×
F .

• Sign character: let χsign denote the one-dimensional module defined by the character

Tŝα 7−→ −1, Tŝα∗ 7−→ −1, Tα∨(x) 7−→ 1,

where x ∈ O×
F .

• Principal series: let χ : T −→ F×
p denote a smooth character. We have a process of parabolic

induction, denoted IndHHT
(χ), which gives a two-dimensional right H-module. Explicitly, if we let

{v1, v2} denote a basis, then the actions of the generators are given by

v1 · Tŝα = v2 v2 · Tŝα = −δχ|T0
,1v2

v1 · Tŝα∗ = −δχ|T0
,1v1 v2 · Tŝα∗ = χ(

(
ϖ−1 0

0 ϖ

)
)v1

v1 · Tt = χ(t)−1v1 v2 · Tt = χ(t)v2

When χ ̸= 1, the module IndHHT
(χ) is simple.
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• Supersingular modules: let 0 ≤ i ≤ q − 1, and let ssi denote the one-dimensional module defined
by the character

Tŝα 7−→ −δi,q−1, Tŝα∗ 7−→ −δi,0, Tα∨(x) 7−→ x −i,

where x ∈ O×
F .

For future reference, we also note that for any right H-module m, we may form the dual space m∨, equipped
with a right action given by

(f · Tg)(m) = f(m · Tg−1),

where m ∈ m, f ∈ m∨. For the simple modules above, we have

χ∨
triv

∼= χtriv, χ∨
sign

∼= χsign, IndHHT
(χ)∨ ∼= IndHHT

((χ−1)sα) ∼= IndHHT
(χ),

ss∨i
∼=

{
ssi if i = 0, q − 1,

ssq−1−i if 0 < i < q − 1.

(For the case of irreducible parabolic induction, see [Abe19, Thm. 4.9].)

0.3. Cohomology – preliminary. We begin to consider cohomology spaces. By unwinding definitions, we
have

(H0) H0(I1,Fp) ∼= χtriv.

Consequently, by [Koz18, Thm. 7.1], we get

(Htop) H3[F :Qp](I1,Fp) ∼= χtriv.

Recall from [Koz18, Lem. 5.1] that

Iab
1 = uα(OF /pF )⊕ u−α(pF /p

2
F ),

so that

(1) H1(I1,Fp) = span{ηα,r, ηα∗,r}0≤r≤f−1,

where

ηα,r

((
1 +ϖa b
ϖc 1 +ϖd

))
= b

pr

and ηα∗,r

((
1 +ϖa b
ϖc 1 +ϖd

))
= cp

r

(a, b, c, d ∈ OF ). By [Koz18, Thm. 6.4], as an H-module we have

(H1) H1(I1,Fp) ∼=

{
IndHHT

(εQp ◦ α) if F = Qp,⊕f−1
r=0 ss2pr ⊕ ssq−1−2pr if F ̸= Qp.

Consequently, by [Koz18, Thm. 7.2], we have

(Htop−1) H3[F :Qp]−1(I1,Fp) ∼=

{
IndHHT

(εQp ◦ α) if F = Qp,⊕f−1
r=0 ss2pr ⊕ ssq−1−2pr if F ̸= Qp.

To proceed further, we examine I1 in relation to other subgroups.

0.4. Cohomology – congruence subgroups. We let K and K∗ denote the maximal compact subgroups
associated to the reflections sα and sα∗ , respectively, so that

K = SL2(OF ) and K∗ =

(
OF p−1

F

pF OF

)
∩G.

We let K1 and K∗
1 denote their first congruence subgroups, so that

K1 =

(
1 + pF pF
pF 1 + pF

)
∩G and K∗

1 =

(
1 + pF OF

p2
F 1 + pF

)
∩G.

We have K1 = I1 ∩ ŝαI1ŝα−1
and K∗

1 = I1 ∩ ŝα∗I1ŝα∗
−1

.
We do the calculations for K1; the calculations for K∗

1 follow by conjugation. One can compute in a
straightforward way that

Kab
1 = u−α(pF /p

2
F )⊕ T1/T2 ⊕ uα(pF /p

2
F ).

Therefore,
H1(K1,Fp) = span{ηu,r, ηd,r, ηl,r}0≤r≤f−1,
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where

ηu,r

((
1 +ϖa ϖb
ϖc 1 +ϖd

))
= b

pr

, ηd,r

((
1 +ϖa ϖb
ϖc 1 +ϖd

))
= ap

r

, ηl,r

((
1 +ϖa ϖb
ϖc 1 +ϖd

))
= cp

r

(a, b, c, d ∈ OF ). We also have

H1(K∗
1 ,Fp) = span{η∗u,r, η∗d,r, η∗l,r}0≤r≤f−1,

where the starred homomorphisms are defined similarly.
The group K acts by conjugation on H1(K1,Fp), and we have

(2) H1(K1,Fp) ∼=
f−1⊕
r=0

Sym2(F⊕2

p )Frr

as K-representations (and similarly for K∗; see [BP12, Prop. 5.1]).
Finally, if F is unramified over Qp, then the dimension of H1(K1,Fp) is equal to the dimension of K1 as a

p-adic manifold, and therefore K1 is uniform (likewise for K∗
1 ; see [KS14, Prop. 1.10, Rmk. 1.11]). We then

obtain

Hi(K1,Fp) ∼=
∧i

H1(K1,Fp)

([SW00, Thm. 5.1.5]).

0.5. Cohomology – quotients. The quotients I1/K1 and I1/K
∗
1 are both isomorphic to OF /pF ∼= Ff

p as
abelian groups. By the Künneth formula, we have

(3) Hi(I1/K1,Fp) ∼=
⊕

i1+...+if=i

Hi1(Fp,Fp)⊗ · · · ⊗Hif (Fp,Fp).

We can write some low-degree terms explicitly. Since H1(I1/K1,Fp) ∼= Hom(I1/K1,Fp), we have

(4) H1(I1/K1,Fp) = span{ηr}0≤r≤f−1,

where

ηr

((
1 b
0 1

))
= b

pr

,

(b ∈ OF ). We write

H1(I1/K
∗
1 ,Fp) = span{η∗r}0≤r≤f−1,

where η∗r are defined similarly (on lower-triangular matrices).
Given 0 ≤ r < s ≤ f − 1, we can form the cup products ηr ⌣ ηs ∈ H2(I1/K1,Fp). It is easy to check

ηr ⌣ ηs ̸= 0, and that the set

{ηr ⌣ ηs}0≤r<s≤f−1

is linearly independent. The span of this set makes up the “H1 ⊗ H1 parts” of (3) above for n = 2 (but the
image of the element ηr ⌣ ηs in the right-hand side of (3) is not a pure tensor).

To get the “H2 parts” of (3) for n = 2 above, we use the following construction. Consider the short exact
sequence of trivial I1/K1-modules

0 −→ Z/pZ ∼= pZ/p2Z −→ Z/p2Z −→ Z/pZ −→ 0,

and the associated long exact sequence of cohomology, with connecting homomorphism β (the first row with
H0’s is exact):

0 −→ H1(I1/K1,Fp) −→ H1(I1/K1,Z/p2Z) −→ H1(I1/K1,Fp)
β−→ H2(I1/K1,Fp)

Since I1/K1 annihilated by p, any homomorphism I1/K1 −→ Z/p2Z factors through pZ/p2Z, and consequently
the first non-zero map is an isomorphism. Therefore, β is an injection. We may extend it linearly to
β : H1(I1/K1,Fp) ↪−→ H2(I1/K1,Fp). By dimension-counting, we conclude

(5) H2(I1/K1,Fp) = span{ηr ⌣ ηs, β(ηt)}0≤r<s≤f−1,0≤t≤f−1.

0.6. Second cohomology of I1 — lower bound.
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0.6.1. Inflations. Combining (4), (1), and (2), we get

dimFp

(
H1(I1/K1,Fp)

)
= f,

dimFp

(
H1(I1,Fp)

)
= 2f,

dimFp

(
H1(K1,Fp

)I1/K1
) = f.

The Hochschild–Serre spectral sequence gives a five-term exact sequence

0 −→ H1(I1/K1,Fp) −→ H1(I1,Fp) −→ H1(K1,Fp)
I1/K1 −→ H2(I1/K1,Fp) −→ H2(I1,Fp),

and the dimension calculations imply that the transgression map H1(K1,Fp)
I1/K1 −→ H2(I1/K1,Fp) is 0.

Therefore, the inflation map

infI1I1/K1
: H2(I1/K1,Fp) −→ H2(I1,Fp)

is injective (and likewise for the group K∗
1 ). Moreover, once can check (using, e.g., the eigenvalues of the

conjugation action of the elements ( a 0
0 1 ) ∈ GL2(OF ), a ∈ O×

F ) that the images of infI1I1/K1
and infI1I1/K∗

1

intersect trivially. Therefore, we get an inclusion

(6) infI1I1/K1

(
H2(I1/K1,Fp)

)
⊕ infI1I1/K∗

1

(
H2(I1/K

∗
1 ,Fp)

)
⊂ H2(I1,Fp).

We simplify the expression (6). Let β : H1(I1,Fp) ↪−→ H2(I1,Fp) denote the Bockstein map of I1 (since
Iab
1 is annihilated by p, β is injective). Since β is defined as a differential, [NSW08, Prop. 1.5.2] implies we
have a commutative diagram of Fp-vector spaces:

H1(I1/K1,Fp) H1(I1,Fp)

H2(I1/K1,Fp) H2(I1,Fp)

inf
I1
I1/K1

β β

inf
I1
I1/K1

Thus, applying infI1I1/K1
to (5) gives

infI1I1/K1

(
H2(I1/K1,Fp)

)
= span

{
infI1I1/K1

(ηr ⌣ ηs), infI1I1/K1
(β(ηt))

}
0≤r<s≤f−1,0≤t≤f−1

= span
{
infI1I1/K1

(ηr)⌣ infI1I1/K1
(ηs), β( infI1I1/K1

(ηt))
}

0≤r<s≤f−1,0≤t≤f−1

= span {ηα,r ⌣ ηα,s, β(ηα,t)}0≤r<s≤f−1,0≤t≤f−1

In particular, the injectivity of the inflation maps implies that the above spanning set is linearly independent.
Proceeding likewise with K∗

1 , we conclude that the following set is linearly independent:

{ηα,r ⌣ ηα,s, β(ηα,t), ηα∗,r ⌣ ηα∗,s, β(ηα∗,t)}0≤r<s≤f−1,0≤t≤f−1

0.6.2. More cup products. We now consider cup products of the form ηα,r ⌣ ηα∗,s for 0 ≤ r, s ≤ f − 1.

Lemma 0.1. We have ηα,r ⌣ ηα∗,s ̸= 0 if and only if r ̸= s.

Proof. Suppose that there exists a 1-cochain ψ : I1 −→ Fp such that dψ = ηα,r ⌣ ηα∗,s; that is, suppose we
have

(7) ψ(h1) + ψ(h2)− ψ(h1h2) = ηα,r(h1)ηα∗,s(h2)

for h1, h2 ∈ I1. The right-hand side is 0 if h1 ∈ B− ∩ I1 or h2 ∈ B ∩ I1. In particular, ψ is a homomorphism
when restricted to B ∩ I1 or B− ∩ I1. Thus, we have

ψ

((
1 b
0 1

))
= νb

pm

ψ

((
1 0
ϖc 1

))
= λcp

ℓ

,

where ν, λ ∈ Fp, b, c ∈ OF , and 0 ≤ ℓ,m ≤ f − 1. Therefore, by the Iwahori decomposition, we have

ψ

((
1 +ϖa b
ϖc 1 +ϖd

))
= ψ

((
1 0

ϖc(1 +ϖa)−1 1

)(
1 +ϖa b

0 (1 +ϖa)−1

))
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(7)
= ψ

((
1 0

ϖc(1 +ϖa)−1 1

))
+ ψ

((
1 +ϖa b

0 (1 +ϖa)−1

))
(7)
= ψ

((
1 0

ϖc(1 +ϖa)−1 1

))
+ ψ

((
1 +ϖa 0

0 (1 +ϖa)−1

))
+ ψ

((
1 b(1 +ϖa)−1

0 1

))
= λcp

ℓ

+ (ψ ◦ α∨)(1 +ϖa) + νb
pm

.(8)

Next, suppose h1 = ( 1 a
0 1 ) and h2 = ( 1 0

ϖ 1 ). Using (8), the left-hand-side of (7) becomes

ψ

((
1 a
0 1

))
+ψ

((
1 0
ϖ 1

))
−ψ

((
1 +ϖa a
ϖ 1

))
= νap

m

+λ−
(
λ+ (ψ ◦ α∨)(1 +ϖa) + νap

m
)
= −(ψ◦α∨)(1+ϖa),

while the right-hand side becomes

ηα,r

((
1 a
0 1

))
ηα∗,s

((
1 0
ϖ 1

))
= ap

r

.

On the other hand, taking h1 = ( 1 1
0 1 ) and h2 = ( 1 0

ϖa 1 ), the left-hand side of (7) becomes

ψ

((
1 1
0 1

))
+ψ

((
1 0
ϖa 1

))
−ψ

((
1 +ϖa 1
ϖa 1

))
= ν+λap

ℓ

−
(
λap

ℓ

+ (ψ ◦ α∨)(1 +ϖa) + ν
)
= −(ψ◦α∨)(1+ϖa),

while the right-hand side becomes

ηα,r

((
1 1
0 1

))
ηα∗,s

((
1 0
ϖa 1

))
= ap

s

.

Collecting terms, we arrive at

ap
s

= −(ψ ◦ α∨)(1 +ϖa) = ap
r

,

which forces r = s.
Conversely, if r = s, then the function

ψ

((
1 +ϖa b
ϖc 1 +ϖd

))
= −ap

r

satisfies the equation (7) for all h1, h2 ∈ I1, which implies ηα,r ⌣ ηα∗,r = 0. □

The action on ηα,r ⌣ ηα∗,s of Tα∨(x) = α∨(x)−1
∗ for x ∈ O×

F is given by the scalar x2pr−2ps

. We therefore
see that the set {ηα,r ⌣ ηα∗,s}0≤r ̸=s≤f−1 is linearly independent, and its span intersects

infI1I1/K1

(
H2(I1/K1,Fp)

)
⊕ infI1I1/K∗

1

(
H2(I1/K

∗
1 ,Fp)

)
trivially. Thus, the following set of vectors is linearly independent:

(9) {ηα,r ⌣ ηα,s, β(ηα,t), ηα∗,r ⌣ ηα∗,s, β(ηα∗,t)}0≤r<s≤f−1,0≤t≤f−1 ∪ {ηα,r ⌣ ηα∗,s}0≤r ̸=s≤f−1

In particular, we obtain the bound

(10) dimFp

(
H2(I1,Fp)

)
≥ 2f2.

0.7. Hecke action. Finally, we calculate the action of H on spanFp
{(9)}.

Note first that the span of the elements β(ηα,t) and β(ηα∗,t) is simply the image of β : H1(I1,Fp) ↪−→
H2(I1,Fp). Since β is defined as a differential corresponding to a short exact sequence of I1-modules, it
commutes with restriction, corestriction, conjugation, and inflation ([NSW08, Prop. 1.5.2]). Recall that if
φ ∈ Hi(I1,Fp), then

φ · Tg = corI1I1∩g−1I1g
◦ g−1

∗ ◦ resI1I1∩gI1g−1(φ).

Thus, we see that β is in fact H-equivariant. In particular, we have β(H1(I1,Fp)) ∼= H1(I1,Fp) as right
H-modules, and we know the structure of the latter space (it is entirely supersingular as soon as F ̸= Qp).
Hence,

(11) spanFp
{β(ηα,t), β(ηα∗,t)}0≤t≤f−1

∼=

{
IndHHT

(εQp
◦ α) if F = Qp,⊕f−1

r=0 ss2pr ⊕ ssq−1−2pr if F ̸= Qp.
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Next, we assume f ≥ 2. By [NSW08, Prop. 1.5.3], the cup product commutes with restriction, conjugation,
and inflation (but not corestriction). Consequently, if φ ∈ Hi(I1,Fp) and ψ ∈ Hj(I1,Fp), we have

(φ ⌣ ψ) · Tg = corI1I1∩g−1I1g

(
g−1
∗ ◦ resI1I1∩gI1g−1(φ)⌣ g−1

∗ ◦ resI1I1∩gI1g−1(ψ)
)
.

We note that
resI1

I1∩ŝαI1ŝα
−1(ηα,r) = resI1K1

(ηα,r) = 0

and
resI1

I1∩ŝα∗I1ŝα∗−1(ηα∗,r) = resI1K∗
1
(ηα∗,r) = 0,

which gives

(12) (ηα,r ⌣ ψ) · Tŝα = 0, (φ ⌣ ηα∗,s) · Tŝα∗ = 0.

The equation (12) implies that each ηα,r ⌣ ηα∗,s gives a one-dimensional supersingular H-module: the

operators Tŝα and Tŝα∗ act by 0, while Tα∨(x) acts by x2pr−2ps

. Thus,

(13) spanFp
{ηα,r ⌣ ηα∗,s}0≤r ̸=s≤f−1

∼=
⊕

0≤r ̸=s≤f−1

ss[−2pr+2ps],

where [i] denotes the unique element of {0, . . . , q − 2} congruent to i modulo q − 1.
Finally, we consider the H-module generated by ηα,r ⌣ ηα,s.

Lemma 0.2. If f ≥ 2, we have
(14)

spanFp
{ηα,r ⌣ ηα,s, ηα∗,r ⌣ ηα∗,s}0≤r<s≤f−1 =

{
IndHHT

(εQp2
◦ α) if F = Qp2 ,⊕

0≤r<s≤f−1 ssq−1−2pr−2pr ⊕ ss2pr+2ps if F ̸= Qp2 .

Proof. We have (ηα,r ⌣ ηα,s) · Tŝα = 0, and the action of Tα∨(x) is given by the scalar x2pr+2ps

. Therefore it
suffices to calculate the action of Tŝα∗ . We have

(ηα,r ⌣ ηα,s) · Tŝα∗ = corI1K∗
1

(
(ŝα∗

−1
)∗ ◦ resI1K∗

1
(ηα,r)⌣ (ŝα∗

−1
)∗ ◦ resI1K∗

1
(ηα,s)

)
= corI1K∗

1

(
(ŝα∗

−1
)∗η

∗
u,r ⌣ (ŝα∗

−1
)∗η

∗
u,s

)
= corI1K∗

1

(
(−η∗l,r)⌣ (−η∗l,s)

)
= corI1K∗

1

(
η∗l,r ⌣ η∗l,s

)
.

Given h =
(

1+ϖa b
ϖc 1+ϖd

)
∈ I1, we define r(h) := u−α(ϖ[c]), so that hr(h)−1 ∈ K∗

1 . Unwinding definitions

in [NSW08], we see that an inhomogenous 2-cocycle representing corI1K∗
1
(η∗l,r ⌣ η∗l,s) is given by

(h1, h2) 7−→
∑
x∈kF

η∗l,r
(
u−α(ϖ[x])h1r(u−α(ϖ[x])h1)

−1
)

·η∗l,s
(
r(u−α(ϖ[x])h1)h

−1
1 u−α(ϖ[x])−1 · u−α(ϖ[x])h1h2r(u−α(ϖ[x])h1h2)

−1
)

=
∑
x∈kF

η∗l,r
(
u−α(ϖ[x])h1r(u−α(ϖ[x])h1)

−1
)
· η∗l,s

(
r(u−α(ϖ[x])h1)h2r(u−α(ϖ[x])h1h2)

−1
)

We evaluate some terms in this sum. Note first that

u−α(ϖ[x])h1r(u−α(ϖ[x])h1)
−1 =(

1 +ϖ(a1 − b1[x+ c1]) b1
ϖ([x] + c1 − [x+ c1]) +ϖ2(a1[x]− d1[x+ c1]− b1[x

2 + c1x]) 1 +ϖ(d1 + b1[x])

)
r(u−α(ϖ[x])h1)h2r(u−α(ϖ[x])h1h2)

−1 =

(
1 +ϖ(a2 − b2[x+ c1 + c2]) b2

ϖ([x+ c1] + c2 − [x+ c1 + c2]) +ϖ2(a2[x+ c1]− d2[x+ c1 + c2]− b2[x+ c1][x+ c1 + c2]) 1 +ϖ(d2 + b2[x+ c1])

)
Thus, the sum above becomes
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∑
x∈kF

(
ϖ−1

(
[x] + c1 − [x+ c1]

)
+ a1x− d1(x+ c1)− b1(x

2 + c1x)

)pr

·
(
ϖ−1

(
[x+ c1] + c2 − [x+ c1 + c2]

)
+ a2(x+ c1)− d2(x+ c1 + c2)− b2(x+ c1)(x+ c1 + c2)

)ps

.

We now analyze some Witt vector calculations in greater depth. Suppose z ∈ kF and c ∈ OF . We have

[z] + c− [z + c] = (c− [c]) + p

[
p−1∑
k=1

−
(
p

k

)
p−1zk/pc(p−k)/p

]
+ . . . ,

where the ellipsis denote higher order terms in the Witt vector expansion. In particular, we see that if F/Qp

is ramified, then pϖ−1 ∈ pF , and the sum above reduces to

∑
x∈kF

(
ϖ−1

(
c1 − [c1]

)
+ a1x− d1(x+ c1)− b1(x

2 + c1x)

)pr

·
(
ϖ−1

(
c2 − [c2]

)
+ a2(x+ c1)− d2(x+ c1 + c2)− b2(x+ c1)(x+ c1 + c2)

)ps

Be expanding, we are left with a sum of terms of the form
∑

x∈kF
axδrp

r+δsp
s

, where δr, δs ∈ {0, 1, 2}. Since
p ≥ 5, we have δrp

r + δsp
s < pf − 1, and therefore all such terms must vanish.

We may therefore assume that F/Qp is unramified (and take ϖ = p to be our uniformizer). The above
sum now becomes∑
x∈kF

(
ϖ−1

(
c1 − [c1]

)
+

p−1∑
k=1

−
(
p

k

)
p−1xk/pc1

(p−k)/p + a1x− d1(x+ c1)− b1(x
2 + c1x)

)pr

·
(
ϖ−1

(
c2 − [c2]

)
+

p−1∑
k=1

−
(
p

k

)
p−1(x+ c1)

k/pc2
(p−k)/p + a2(x+ c1)− d2(x+ c1 + c2)− b2(x+ c1)(x+ c1 + c2)

)ps

Expanding once again, we find a sum of terms of the form
∑

x∈kF
axδrp

r+δsp
s

, where now δr, δs ∈ {0, 1, 2, 1/p, 2/p, . . . , (p−
1)/p}. In order for such a sum to be nonzero, we must have δrp

r + δsp
s ≡ 0 (mod pf −1) and (δr, δs) ̸= (0, 0).

Examining possibilities, we see that if the sum is nonzero, then we must have f = 2, δr = δs = (p − 1)/p.
(This also forces r = 0, s = 1.) In this case, the sum above becomes∑

x∈kF

−
(

p

p− 1

)
p−1x(p−1)/pc1

1/p

(
−
(

p

p− 1

)
p−1x(p−1)/pc2

1/p

)p

=
∑
x∈kF

c1
pc2x

p2−1

= −c1pc2
= −(ηα∗,1 ⌣ ηα∗,0)(h1, h2).

Combining these calculations, we conclude

(ηα,r ⌣ ηα,s) · Tŝα∗ =

{
−(ηα∗,1 ⌣ ηα∗,0) = ηα∗,0 ⌣ ηα∗,1 if F = Qp2 ,

0 if F ̸= Qp2 .

Further, conjugating by ( 0 1
ϖ 0 ) shows that we have

(ηα∗,r ⌣ ηα∗,s) · Tŝα =

{
ηα,0 ⌣ ηα,1 if F = Qp2 ,

0 if F ̸= Qp2 .

□

Remark 0.3. A similar calculation with cup products shows that when F = Qpf , the element ηα,0 ⌣ ηα,1 ⌣

. . . ⌣ ηα,f−1 generates an H-submodule of Hf (I1,Fp) isomorphic to IndHHT
(εQ

pf
◦ α).
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Combining equations (11), (13), and (14), we arrive at

(15) spanFp
{(9)} ∼=



IndHHT
(εQp

◦ α) if F = Qp,

ss2 ⊕ ssp−3 if f = 1, F ̸= Qp,(
ss2 ⊕ ssp2−3 ⊕ ss2p ⊕ ssp2−1−2p

)
⊕
(
ss2p−2 ⊕ ssp2−1−2p+2

)
⊕IndHHT

(εQp2
◦ α) if F = Qp2 ,(⊕f−1

r=0 ss2pr ⊕ ssq−1−2pr

)
⊕
(⊕

0≤r ̸=s≤f−1 ss[−2pr+2ps]

)
⊕
(⊕

0≤r<s≤f−1 ssq−1−2pr−2pr ⊕ ss2pr+2ps

)
if f ≥ 2, F ̸= Qp2 .

0.8. Second cohomology of I1 — upper bound. Our next task will be to use a spectral sequence to try
to get an upper bound on the dimension of H2(I1,Fp). For simplicity, we assume that F is unramified over
Qp and take ϖ = p to be our uniformizer.

We define a function ω : I1 −→ R>0 ∪ {∞} as follows:

ω

((
1 + pa b
pc 1 + pd

))
:= min

{
valp(a) + 1, valp(b) +

1

2
, valp(c) +

1

2
, valp(d) + 1

}
By [LS24, Prop. 3.5], the function ω defines a p-valuation on I1. Furthermore, by choosing a basis {xr}0≤r≤f−1

of OF over Zp, we see that an ordered basis of I1 is given by the elements

{uα(xr), u−α(pxr), α∨(exp(pxr))}0≤r≤f−1 .

Let grω(I1) denote the graded group associated to I1 (and ω), and let I := Lieω(I1) := grω(I1) ⊗Fp[P ] Fp

denote the Lie algebra of I1 associated to ω. Here, P denotes the operator which sends hI1,ν+ to hpI1,(ν+1)+.
The Lie algebra I has a Lie bracket induced by the commutator in I1. By decomposing with respect to field
embeddings, we have an isomorphism of Lie algebras

I =

f−1⊕
r=0

gr,

where gr is a 3-dimensional Fp-Lie algebra with basis er, fr, hr and bracket relations

[er, fr] = hr, [hr, er] = 0, [hr, fr] = 0.

(The elements er (resp., fr, resp., hr) are linear combinations of the elements uα(xr′)⊗1 (resp., u−α(pxr′)⊗1,

resp., α∨(exp(pxr′))⊗ 1).)
By [Sor21, Thm. 5.5], we have a convergent spectral sequence

Ei,j
1 = Hi,j(I,Fp) =⇒ Hi+j(I1,Fp)

Specializing to H2(I1,Fp), we obtain

dimFp

(
H2(I1,Fp)

)
=

∑
i+j=2

dimFp
(Ei,j

∞ )

≤
∑

i+j=2

dimFp
(Ei,j

1 )

=
∑
i∈Z

dimFp

(
Hi,2−i(I,Fp)

)
.(16)

It therefore suffices to understand

Hi,2−i(I,Fp) = hi+(2−i)
(
gri(C•(I,Fp))

)
= h2

(
gri(C•(I,Fp))

)
.

Here, C•(I,Fp) denotes the Chevalley–Eilenberg complex. The grading on this complex is defined as follows.

• We endow Fp with the grading which puts Fp in degree 0.
• The Lie algebra I has a grading induced from the grading on grω(I1). We have

I = I1 ⊕ I2

:= gr
1/2+Z≥0
ω (I1)⊗Fp[P ] Fp ⊕ gr

1+Z≥0
ω (I1)⊗Fp[P ] Fp

= spanFp
{er, fr}0≤r≤f−1 ⊕ spanFp

{hr}0≤r≤f−1 .
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• For j ≥ 0, the space
∧j

Fp
I is endowed with a grading as follows. Given homogeneous elements

v1, . . . , vk ∈ I, we let deg(v1 ∧ . . . ∧ vk) =
∑k

ℓ=1 deg(vℓ). We then set∧j

Fp

I =
⊕
i∈Z

gri
(∧j

Fp

I

)
:=

⊕
i∈Z

spanFp

{
v ∈

∧j

Fp

I : deg(v) = i

}
.

• We endow HomFp
(
∧j

Fp
I,Fp) with a grading as follows:

HomFp

(∧j

Fp

I,Fp

)
=

⊕
i∈Z

Homi
Fp

(∧j

Fp

I,Fp

)
:=

⊕
i∈Z

{
f ∈ HomFp

(∧j

Fp

I,Fp

)
: f is homogeneous of degree i

}
=

⊕
i∈Z≤0

HomFp

(
gr−i

(∧j

Fp

I

)
,Fp

)
• The Chevalley–Eilenberg complex C•(I,Fp) is defined by

0 −→ Fp
∂1−→ HomFp

(
I,Fp

) ∂2−→ HomFp

(∧2

Fp

I,Fp

)
∂3−→ HomFp

(∧3

Fp

I,Fp

)
∂4−→ . . .

The differentials are defined as follows: we have ∂1 = 0 and given j ≥ 1 and f ∈ HomFp
(
∧j

Fp
I,Fp),

we have

(∂j+1f)(X1 ∧X2 ∧ . . . ∧Xj+1) =
∑

1≤a<b≤j+1

(−1)a+bf([Xa, Xb] ∧X1 ∧ . . . ∧ X̂a ∧ . . . ∧ X̂b ∧ . . . ∧Xj+1).

• The differentials ∂j respect the grading on HomFp
(
∧•

Fp
I,Fp), and therefore induce a complex gri(C•(I,Fp))

given by

0 −→ gri
(
Fp

) ∂1−→ HomFp

(
gr−i (I) ,Fp

) ∂2−→ HomFp

(
gr−i

(∧2

Fp

I

)
,Fp

)
∂3−→ HomFp

(
gr−i

(∧3

Fp

I

)
,Fp

)
∂4−→ . . .

Recall that we are interested in calculating h2(gri(C•(I,Fp))). We first note that gr−i(
∧2

Fp
I) ̸= 0 implies

i = −2,−3, or −4. This gives

(17) dimFp

(
Hi,2−i(I,Fp)

)
= dimFp

(
h2(gri(C•(I,Fp)))

)
= 0 if i ̸∈ {−2,−3,−4}.

We examine the remaining cases in turn.

0.8.1. i = −2. In this case, we note that gr2(
∧3

Fp
I) = 0, so that ∂3 = 0 in the complex gr−2(C•(I,Fp)). It

suffices to understand the image of ∂2. Suppose f ∈ HomFp
(gr2(

∧2
Fp

I),Fp) is in the image of ∂2. Then there

exists g ∈ HomFp
(gr2(I),Fp) satisfying ∂2g = f. In particular, if X ∧ Y ∈ I1 ∧ I1 = gr2(

∧2
Fp

I), then

f(X ∧ Y ) = (∂2g)(X ∧ Y ) = −g([X,Y ]).

Thus, f vanishes on er ∧ es (r < s), fr ∧ fs (r < s), and er ∧ fs (r ̸= s). The space of such homomorphisms
is f -dimensional (being dual to the space spanned by er ∧ fr (0 ≤ r ≤ f − 1)), and therefore, we obtain

dimFp

(
H−2,4(I,Fp)

)
= dimFp

(
h2(gr−2(C•(I,Fp)))

)
= dimFp

(
gr2
(∧2

Fp

I

))
− dimFp

(
im
(
∂2|gr−2(C•(I,Fp))

))
=

(
2f

2

)
− f

= 2f2 − 2f.(18)

(Note that this quantity is 0 if f = 1.)
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0.8.2. i = −3. In this case, we note that gr3(I) = 0, so that ∂2 = 0 in the complex gr−3(C•(I,Fp)). It
therefore suffices to compute the kernel of ∂3. If f lies in this kernel, and if X,Y, Z ∈ I1, then we have
X ∧ Y ∧ Z ∈ I1 ∧ I1 ∧ I1 = gr3(

∧3
Fp

I) and

0 = (∂3f)(X ∧ Y ∧ Z) = −f([X,Y ] ∧ Z) + f([X,Z] ∧ Y )− f([Y,Z] ∧X).

In particular, we obtain the following relation:

f(er ∧ hs) = −f([es, fs] ∧ er)
= −f([es, er] ∧ fs) + f([fs, er] ∧ es)

=

{
0 if r ̸= s,

f(−hr ∧ er) if r = s.

Similarly, we have

f(fr ∧ hs) =

{
0 if r ̸= s,

−f(hr ∧ fr) if r = s.

Thus, f is determined by its values on the elements er ∧ hr and fr ∧ hr (0 ≤ r ≤ f − 1). We therefore obtain

dimFp

(
H−3,5(I,Fp)

)
= dimFp

(
h2(gr−3(C•(I,Fp)))

)
= dimFp

(
ker
(
∂3|gr−2(C•(I,Fp))

))
= 2f.(19)

0.8.3. i = −4. As with the previous case, we have gr4(I) = 0, so that ∂2 = 0 in the complex gr−4(C•(I,Fp)),
and it suffices to compute the kernel of ∂3. If f lies in the kernel, and if X ∈ I1, Y ∈ I1 and Z ∈ I2, then we
have X ∧ Y ∧ Z ∈ gr4(

∧3
Fp

I) and

0 = (∂3f)(X ∧ Y ∧ Z)
= −f([X,Y ] ∧ Z) + f([X,Z] ∧ Y )− f([Y,Z] ∧X)

= −f([X,Y ] ∧ Z)

(we are using that [X,Z] = [Y, Z] = 0 since I2 is central in I). As [I1, I1] = I2, we see that f vanishes on all

of I2∧I2 = gr4(
∧2

Fp
I), and therefore is trivial. This implies that ∂3|gr4(C•(I,Fp)) is injective, and consequently

(20) dimFp

(
H−4,6(I,Fp)

)
= dimFp

(
h2(gr−4(C•(I,Fp)))

)
= 0.

Combining equations (17), (18), (19), and (20), we obtain

dimFp

(
H2(I1,Fp)

) (16)

≤
∑
i∈Z

dimFp

(
Hi,2−i(I,Fp)

)
= (2f2 − 2f) + 2f = 2f2.

Combining this with the lower bound (10) and equation (15) gives the following.

Theorem 0.4. Suppose p ≥ 5 and F is unramified over Qp of degree f . We then have dimFp
(H2(I1,Fp)) =

2f2. Moreover, as a right H-module, we have

(H2) H2(I1,Fp) ∼=



IndHHT
(εQp

◦ α) if F = Qp,(
ss2 ⊕ ssp2−3 ⊕ ss2p ⊕ ssp2−1−2p

)
⊕
(
ss2p−2 ⊕ ssp2−1−2p+2

)
⊕IndHHT

(εQp2
◦ α) if F = Qp2 ,(⊕f−1

r=0 ss2pr ⊕ ssq−1−2pr

)
⊕
(⊕

0≤r ̸=s≤f−1 ss[−2pr+2ps]

)
⊕
(⊕

0≤r<s≤f−1 ssq−1−2pr−2pr ⊕ ss2pr+2ps

)
if f ≥ 3.

The theorem above also gives the structure of H3f−2(I1,Fp) by duality.
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